SERVICE MODULE

MEDICAL OPERATIONS

[MO]

BOOK 1

REFERENCE MANUALS

SM

© РКК "ЭНЕРГИЯ", 2000
Revision Log

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Lines</th>
<th>Date</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E</td>
<td>25-Sep-00</td>
<td>5-19E</td>
<td>6-41E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2E</td>
<td>25-Sep-00</td>
<td>5-20E</td>
<td>6-42E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3E</td>
<td>25-Sep-00</td>
<td>5-21E</td>
<td>6-43E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4E</td>
<td>25-Sep-00</td>
<td>5-22E</td>
<td>6-44E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>5E</td>
<td>25-Sep-00</td>
<td>5-23E</td>
<td>6-45E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>6E</td>
<td>25-Sep-00</td>
<td>5-24E</td>
<td>6-46E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>7E</td>
<td>25-Sep-00</td>
<td>5-25E</td>
<td>6-47E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>8E</td>
<td>25-Sep-00</td>
<td>5-26E</td>
<td>6-48E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>9E</td>
<td>25-Sep-00</td>
<td>5-27E</td>
<td>6-49E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>10E</td>
<td>25-Sep-00</td>
<td>5-28E</td>
<td>6-50E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>1-1E</td>
<td>25-Sep-00</td>
<td>5-29E</td>
<td>6-51E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>1-2E</td>
<td>25-Sep-00</td>
<td>5-30E</td>
<td>6-52E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-1E</td>
<td>25-Sep-00</td>
<td>5-31E</td>
<td>6-53E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-2E</td>
<td>25-Sep-00</td>
<td>5-32E</td>
<td>6-54E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-3E</td>
<td>25-Sep-00</td>
<td>5-33E</td>
<td>6-55E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-4E</td>
<td>25-Sep-00</td>
<td>5-34E</td>
<td>6-56E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-5E</td>
<td>25-Sep-00</td>
<td>5-35E</td>
<td>6-57E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>2-6E</td>
<td>25-Sep-00</td>
<td>5-36E</td>
<td>6-58E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-1E</td>
<td>25-Sep-00</td>
<td>5-37E</td>
<td>7-1E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-2E</td>
<td>25-Sep-00</td>
<td>5-38E</td>
<td>7-2E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-3E</td>
<td>25-Sep-00</td>
<td>5-39E</td>
<td>7-3E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-4E</td>
<td>25-Sep-00</td>
<td>5-40E</td>
<td>7-4E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-5E</td>
<td>25-Sep-00</td>
<td>5-41E</td>
<td>7-5E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-6E</td>
<td>25-Sep-00</td>
<td>5-42E</td>
<td>7-6E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-7E</td>
<td>25-Sep-00</td>
<td>5-43E</td>
<td>7-7E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-8E</td>
<td>25-Sep-00</td>
<td>5-44E</td>
<td>7-8E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-9E</td>
<td>25-Sep-00</td>
<td>5-45E</td>
<td>7-9E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-10E</td>
<td>25-Sep-00</td>
<td>5-46E</td>
<td>7-10E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-11E</td>
<td>25-Sep-00</td>
<td>5-47E</td>
<td>7-11E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-12E</td>
<td>25-Sep-00</td>
<td>5-48E</td>
<td>7-12E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-13E</td>
<td>25-Sep-00</td>
<td>6-1E</td>
<td>7-13E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-14E</td>
<td>25-Sep-00</td>
<td>6-2E</td>
<td>7-14E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-15E</td>
<td>25-Sep-00</td>
<td>6-3E</td>
<td>7-15E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-16E</td>
<td>25-Sep-00</td>
<td>6-4E</td>
<td>7-16E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-17E</td>
<td>25-Sep-00</td>
<td>6-5E</td>
<td>8-1E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-18E</td>
<td>25-Sep-00</td>
<td>6-6E</td>
<td>8-2E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-19E</td>
<td>25-Sep-00</td>
<td>6-7E</td>
<td>8-3E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>3-20E</td>
<td>25-Sep-00</td>
<td>6-8E</td>
<td>8-4E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-1E</td>
<td>25-Sep-00</td>
<td>6-9E</td>
<td>9-1E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-2E</td>
<td>25-Sep-00</td>
<td>6-10E</td>
<td>9-2E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-3E</td>
<td>25-Sep-00</td>
<td>6-11E</td>
<td>9-3E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-4E</td>
<td>25-Sep-00</td>
<td>6-12E</td>
<td>9-4E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-5E</td>
<td>25-Sep-00</td>
<td>6-13E</td>
<td>9-5E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-6E</td>
<td>25-Sep-00</td>
<td>6-14E</td>
<td>9-6E</td>
<td>25-Sep-00</td>
</tr>
<tr>
<td>4-7E</td>
<td>25-Sep-00</td>
<td>6-15E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-8E</td>
<td>25-Sep-00</td>
<td>6-16E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-9E</td>
<td>25-Sep-00</td>
<td>6-17E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-10E</td>
<td>25-Sep-00</td>
<td>6-18E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-11E</td>
<td>25-Sep-00</td>
<td>6-19E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-12E</td>
<td>25-Sep-00</td>
<td>6-20E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-13E</td>
<td>25-Sep-00</td>
<td>6-21E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>4-14E</td>
<td>25-Sep-00</td>
<td>6-22E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-1E</td>
<td>25-Sep-00</td>
<td>6-23E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-2E</td>
<td>25-Sep-00</td>
<td>6-24E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-3E</td>
<td>25-Sep-00</td>
<td>6-25E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-4E</td>
<td>25-Sep-00</td>
<td>6-26E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-5E</td>
<td>25-Sep-00</td>
<td>6-27E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-6E</td>
<td>25-Sep-00</td>
<td>6-28E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-7E</td>
<td>25-Sep-00</td>
<td>6-29E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-8E</td>
<td>25-Sep-00</td>
<td>6-30E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-9E</td>
<td>25-Sep-00</td>
<td>6-31E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-10E</td>
<td>25-Sep-00</td>
<td>6-32E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-11E</td>
<td>25-Sep-00</td>
<td>6-33E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-12E</td>
<td>25-Sep-00</td>
<td>6-34E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-13E</td>
<td>25-Sep-00</td>
<td>6-35E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-14E</td>
<td>25-Sep-00</td>
<td>6-36E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-15E</td>
<td>25-Sep-00</td>
<td>6-37E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-16E</td>
<td>25-Sep-00</td>
<td>6-38E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-17E</td>
<td>25-Sep-00</td>
<td>6-39E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
<tr>
<td>5-18E</td>
<td>25-Sep-00</td>
<td>6-40E</td>
<td>25-Sep-00</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. **GENERAL INSTRUCTIONS** ... 1-1
 1.1. CREW RESPONSIBILITIES ... 1-1
 1.2. CREW PROCEDURES WORKING SEQUENCE .. 1-1

2. **BIOENVIRONMENTAL SURVEILLANCE** ... 2-1
 2.1. PERIODIC CLEANING OF COMPARTMENTS WITH VACUUM CLEANER 2-1
 2.2. WET CLEANING .. 2-2
 2.2.1. PERIODIC WET CLEANING ... 2-2
 2.2.2. OVERALL WET CLEANING ... 2-3
 2.2.3. CLEANING WITH FUNGISTAT KIT ... 2-4

3. **PERSONAL HYGIENE OPERATIONS** .. 3-1
 3.1. UNDERWEAR .. 3-1
 3.2. CHANGE COVERALLS ... 3-3
 3.3. WARM COVERALLS ... 3-6
 3.4. OPERATOR’S COVERALLS ... 3-7
 3.5. SPORTS FOOTWEAR .. 3-8
 3.6. TOOL BELT ... 3-8
 3.7. SPRUT SECURING HARNESS ... 3-9
 3.8. MOUNTER’S SET .. 3-11
 3.9. COMFORT PERSONAL HYGIENE SET .. 3-13
 3.10. AELITA HYGIENE SET .. 3-16
 3.11. PERSONAL HYGIENE ARTICLES .. 3-16
 3.12. BERUSHI KIT ... 3-17
 3.13. EYE MASK ... 3-17
 3.14. SLEEPING BAG .. 3-17
 3.15. MORPHEUS STRAPPING SYSTEM .. 3-18

4. **RUSSIAN MEDICATIONS AND MEDICAL SUPPLIES** ... 4-1
 4.1. SYRINGE TUBE .. 4-4
 4.2. CAMETHON AEROSOL CANISTER ... 4-4
 4.3. GALAZOLIN NASAL DROPS ... 4-5
 4.4. DROPPER TUBE WITH EYE DROPS .. 4-5
 4.5. CEFECON SUPPOSITORY .. 4-6
 4.6. OLASOL AEROSOL SPRAY .. 4-6
 4.7. TUBE WITH AQUA AMMONIA .. 4-7
 4.8. TREATMENT OF SMALL SKIN WOUNDS ... 4-7
 4.9. TUBE WITH OINTMENT .. 4-8
 4.10. CAPSICUM BANDAGE .. 4-9
 4.11. DRESSING PACKAGE, COTTON BALLS AND GAUZE ... 4-9
 4.12. IMMOBILIZATION SPLINTS ... 4-10
 4.13. STOPPING MAJOR BLEEDING IN EXTREMITIES .. 4-11
 4.14. ACETICO (WATER SOLUBLE ASPIRIN) .. 4-11
 4.15. INSTRUCTIONS FOR USAGE OF FIRST-AID KIT CONTENTS .. 4-12
5. MEANS FOR MICROGRAVITY COUNTERMEASURES ... 5-1
 5.1. BRASLET AND BRASLET-M UNITS ... 5-1
 5.2. PENGUIN-3 CONSTANT-LOADING SUIT ... 5-5
 5.2.1. SUIT DONNING AND ADJUSTMENT ... 5-5
 5.2.2. PREPARATION FOR PEDALING .. 5-6
 5.2.3. PENGUIN SUIT ADJUSTMENT .. 5-6
 5.3. THK-Y-1 TRAINING-LOADING SUIT ... 5-9
 5.4. CYCLE ERGOMETER BE-3 .. 5-12
 5.4.1. CYCLE ERGOMETER INITIAL SETUP ... 5-15
 5.4.2. CYCLE ERGOMETER ADJUSTMENT ... 5-18
 5.4.3. CYCLE ERGOMETER STOWAGE ... 5-18
 5.4.4. TROUBLESHOOTING .. 5-20
 5.5. CHEST EXPANDER SET .. 5-21
 5.6. TONUS-3 MYOELECTROSTIMULATOR .. 5-22
 5.7. CHIBIS — PREVENTIVE LBNP SET .. 5-26
 5.7.1. WAIST SEAL CURTAIN/CORRUGATED SHEATH ... 5-30
 5.7.2. REMOVABLE WAIST SEAL CURTAIN ... 5-30
 5.8. KENTAVR PROTECTIVE SUIT .. 5-31
 5.8.1. DONNING AND ADJUSTING KENTAVR SUIT .. 5-31
 5.8.2. DOFFING KENTAVR SUIT ... 5-32

6. MEANS FOR MEDICAL MONITORING .. 6-1
 6.1. GAMMA-1 SET .. 6-1
 6.1.1. MEDICAL EXAM PANEL .. 6-4
 6.1.2. BLOOD PRESSURE PANEL ... 6-6
 6.1.3. RHEOPLETYSMOGRAPHY PANEL <ГАММА-1> WITH КОММУТАТОР РПГ (RHEOPLETYSMOGRAPHY PANEL <ГАММА-1> SWITCHING UNIT) .. 6-8
 6.1.4. OSCILLOSCOPE ОМЭЛ-46 ... 6-11
 6.1.5. SENSOR UNITS (УСИ) AND ACCESSORIES KITS ... 6-12
 6.1.6. INDIVIDUAL ADJUSTMENT OF УСИ BIOMED HARNESSSES 6-19
 6.1.7. REFILLING CONDUCTIVE FLUID FROM KOLOS SYSTEM 6-19
 6.1.8. WETTING ELECTRODES ... 6-20
 6.1.9. LUBRICATING BLOOD PRESSURE PANEL COMPRESSOR BLADES 6-20
 6.1.10. GAMMA-1M TROUBLE SHOOTING ... 6-21
 6.2. MASS MEASUREMENT DEVICE (ИММ) .. 6-22
 6.2.1. INTEGRATED INERTIAL CONVERTER UNIT (ИКИ) INITIAL SETUP 6-26
 6.2.2. ИММ CONFIGURATION FOR SMALL MASS MEASUREMENT (ИММ) MODE 6-30
 6.2.3. SMALL MASS MEASUREMENT ... 6-31
 6.2.3.1. DEVICE CALIBRATION AND CALIBRATION CHECK 6-31
 6.2.3.2. SMALL MASS MEASUREMENT .. 6-32
 6.2.3.3. SMALL MASS (UP TO 0.2 KG) MEASUREMENT ... 6-33
 6.2.3.4. SMALL MASS MEASUREMENT USING ADDITIONAL PACKING (CONTAINER) 6-34
 6.2.4. CLOSEOUT OPERATIONS AFTER COMPLETION OF SMALL MASS MEASUREMENT 6-35
 6.2.5. TROUBLE SHOOTING ... 6-36
 6.3. SPHYGOMANOMETER TENSOLPLUS ... 6-39
 6.3.1. BATTERY REPLACEMENT .. 6-42
 6.4. COMPLEX CENTER ... 6-43
 6.4.1. TROUBLE SHOOTING .. 6-48
 6.5. REFLotron-4 ANALYZER ... 6-49
 6.6. MINICENTRIFUGE M-1100 ... 6-52
 6.7. ECG RECORDER 90205 ... 6-55
 6.7.1. TROUBLE SHOOTING ... 6-56
 6.8. URILUX UNIT .. 6-57
 6.8.1. PAPER AND CARTRIDGE INSTALLATION ... 6-58
7. PLASMA – 03 COMPLEX.. 7-1
 7.1. KRIOGEM-03 REFRIGERATOR ... 7-3
 7.1.1. KRIOGEM-03 SETUP ... 7-4
 7.1.2. KRIOGEM-03 ACTIVATION IN MODE -22°C ... 7-5
 7.1.3. KRIOGEM-03 ACTIVATION IN INCUBATOR MODE ... 7-6
 7.1.4. KRIOGEM-03 REFRIGERATOR DEACTIVATION ... 7-7
 7.1.5. INSTALLATION OF COLD ACCUMULATORS AX-03 IN KRIOGEM-03 REFRIGERATOR 7-8
 7.1.6. CLOSEOUT OPERATIONS WITH COLD ACCUMULATORS AX – 03 7-9
 7.1.7. TROUBLE SHOOTING .. 7-10
 7.2. PLASMA-03 CENTRIFUGE .. 7-12
 7.2.1. CENTRIFUGE SETUP ... 7-13
 7.2.2. SAMPLE CENTRIFUGATION ... 7-13
 7.2.3. CLOSEOUT OPERATIONS ... 7-15
 7.2.4. TROUBLE SHOOTING ... 7-16

8. ECOSPHERA EQUIPMENT.. 8-1

9. HEARING PROTECTION SET.. 9-1
 9.1. USE OF EARPHONES ... 9-1
 9.1.1. USE OF EARPHONES FOR HEARING PROTECTION .. 9-2
 9.1.2. USE OF EARPHONES FOR COMM ... 9-3
 9.2. BATTERY CHARGE .. 9-4
For notes
For notes
ACRONYMS AND ABBREVIATIONS

АД - arterial blood pressure

Б/И - crew procedure

БП - power supply unit

ВАП - venous-arterial pulsogram

ВБ - cycle ergometer

ВКЛ - activate

ВЛГ - temporal pulsogram

ВЫКЛ - deactivate

ГИ - impulse generator

ЗАКР - close, closed

ИМ - mass measurement device

ИММ - small mass measurement

ККГ - kynetocardiogram

ОДНТ - lower body negative pressure, LBNP

ОТКЛ - deactivate

ОТКР - open, opened

ПИТ - power

ПВК - LBNP prophylactic system

ПКО - biomed harness

ПМО - medical exam panel

ППС - systems power panel

ПУ - control panel

РБС - onboard power outlet

РМ - workstation

РПГ - rheogram

РЭГ - rheoencephalogram
СЛГ - personal hygiene articles
СОМП - medical care articles

ТНК - training-loading suit

УСИ - sensor unit
УС - Matching Unit
УСВ - MASS MEASUREMENT PANEL

ЦИ - digital indicator

ЧСС - heart rate
ЧП - pulse rate

ШКО - biomed cap
ЭКГ - electrocardiogram, ECG

ДнаЗ - Report to MCC
ДпоУЗ - √MCC

кан - channel
кн - pushbutton, pb
кбл - cable
клав - pushbutton, pb

п - section
пан - panel
перекл - switch, sw
поРЭ - crew preference
поУЗ - on MCC GO

рзм - connector
р/г - radiogram
Рис - figure

СвД - LED, light emitting diode
с/с - comm pass
стр - p, page

Табл - table
- illuminated
- not illuminated
- blinking
- illumination status changes when command is issued
- rotate clockwise
- rotate counterclockwise
- rotate clockwise to stop
- rotate counterclockwise to stop
- place physical device in designated state or record data in Table
- connect
- disconnect
- upward, up
- downward, down
- sw \(\rightarrow\) On (i.e. up relative to label on panel)
- sw \(\rightarrow\) Off (i.e. down relative to label on panel)
- press pushbutton
- press pushbutton to lock
- press pushbutton to release
- verify
- verify aurally
- check (in case of discrepancy, attempt a corrective action one time only)

12:35:20 - 12 h 35 min 20 sec
:30: - 30 min
::10 - 10 sec
:35:20 - 35 min 20 sec
03:: - 03 h
:05: - 05 min
::08 - 08 sec

\(P\) - pressure

\(T.0\) - AOS time
\(T.KTM\) - LOS time
********** - an anticipated off-nominal situation, if the condition left of the asterisks on the same line is not met, perform action(s) enclosed by asterisk lines
********** Sect. 5 - an anticipated off-nominal situation, if the condition left of the asterisks on the same line is not met, proceed per indicated reference
********\(\sqrt{\text{MCC}}\) - an unanticipated off-nominal situation, if the condition left of the asterisks on the same line is not met, halt procedure execution and \(\sqrt{\text{MCC}}\)
1. GENERAL INSTRUCTIONS

These Medical Operations crew procedures are intended for trained crew members who have completed the full training course and simulations.

These crew procedures may be updated pending systems modifications and procedure validation at simulators and training facilities.

1.1. CREW RESPONSIBILITIES

While performing operations, the crew is responsible for the following actions:
- Perform operations per these crew procedures
- Systems and equipment operation
- Report to MCC completed operations and performance of systems and equipment

When there is a deviation from nominal systems operation, the crew is responsible for the following actions:
- Power down the failed hardware (if necessary)
- Record the time when the deviation (malfunction) was detected
- Record the nature of the deviation (malfunction)
- Report to MCC

1.2. CREW PROCEDURES WORKING SEQUENCE

Obtain source data from MCC
- Sufficient of the received data
Schedule a command output sequence (if necessary)
Perform setup steps
Perform the indicated actions, while monitoring systems operation
Perform closeout steps
Measurement results should be entered into Laptop or recorded in corresponding tables provided in the crew procedures
Prepare a report:
- On completion of tasks
- On any detected peculiarities or deviations (with a time stamp)
For notes
2. BIOENVIRONMENTAL SURVEILLANCE

Equipment Usage:
- Removal of food waste products
- Periodic cleaning of compartments with vacuum cleaner
- Wet cleaning

2.1. PERIODIC CLEANING OF COMPARTMENTS WITH VACUUM CLEANER

Required Hardware:
- Vacuum cleaner

NOTE
1. Vacuum cleaner continuous operation time should not exceed 30 min
 After that, stop motor for at least 10 min
2. Replace dust collector bag every 10 days

1. Power cord → vacuum cleaner
 Power cord → PBC 20 power outlet
2. PBC 20
3. Power switch on vacuum cleaner → ON
4. Using vacuum cleaner, clean all external surfaces and accessible zones behind panels
5. Turn vacuum cleaner off in the reverse order
6. Stow dust collector bag in container
2.2. WET CLEANING

CAUTION

Never use wet wipes for cleaning electrical connectors

NOTE

1. During cleaning, perform visual inspection of the ISS interior and hardware surfaces, including known dust and condensate collection areas. Look for any discolorations that may resemble growing mold or fungal colonies.

2. In the event of finding such colonies on both metal and non-metal surfaces, they should first be dried with available hygiene tissues or towels, and then treated with specialized antifungal agents, such as cleansing wipes for surfaces and wipes from Fungistat kit (see Sect. 2.2.3. p. 2-4).

Required Equipment:

- Microbial Growth Wipes Kit
 - Package containing wipe 10 ea.

- Fungistat Kit
 - Package containing wipe 5 ea.
 - Package containing rubber gloves 1 ea.

2.2.1. PERIODIC WET CLEANING

(once every 7 days)

1. Perform cleaning using one wipe from kit labeled Microbial Growth Wipes

2. Clean hands using wet wipe from Sanitary hygiene kit

3. Discard used wipes
2.2.2. OVERALL WET CLEANING
(once every 14 days)

NOTE
1. Overall wet cleaning is performed by two crewmembers
2. Four wipes are used during cleaning
3. During cleaning, carefully wipe all surfaces of ISS interior and equipment

1. Using first wipe clean table, seats, refrigerator, rubber flaps of waste products bag (at the table) strictly following the order
2. Using second wipe clean hatches, hatchway handrails strictly following the order
3. Using third wipe clean cycle ergometer, treadmill handrails and surface, wall panels and surfaces of toilet cabin in the most contaminated areas strictly following the order
4. Using fourth wipe clean walls of toilet and surfaces of the toilet urine funnel strictly following the order
5. Clean hands using wet wipe from Sanitary hygiene kit
6. Discard all used wipes
2.2.3. CLEANING WITH FUNGISTAT KIT

CAUTION

All activities with Fungistat wipes should be performed while wearing rubber gloves.

NOTE

1. Fungistat wipes are used to treat areas suspected of having mold or fungal colonies (based on the results of visual inspection or on MCC GO).
2. Use one package for treatment of 1.5-2 m² area.

1. Unstow Fungistat kit

2. Remove necessary number of Fungistat wipes and rubber gloves.
 Don rubber gloves.

3. Seal the drainage aperture on package with protective film from adhesive plaster.

4. Cut off the color strip on the package mouth, using scissors (to open leaf valve).

5. Open leaf valve, by pulling it apart.
 The leaf valve cone part — condensate water recovery system [CPBK] dispenser.

6. Add 75 ml of cold water into the package.

7. Wring any remaining drops of water in leaf valve back into the package.

8. The package — the dispenser.

9. Squeeze the wipe back and forth (to enable dissolution of disinfectant, contained in the wipe).

10. Open package with scissors from the side opposite the leaf valve.
 Remove wipe.
11. Perform surface cleaning

12. Discard used wipes into packages
 Discard packages with used wipes

13. After 60 min, repeat cleaning (see Steps 2-12 pp. 2-4, 2-5)

14. When complete:
 - Wipe rubber gloves with a dry tissue from the Sanitary hygiene kit
 - Stow gloves in their package
 - Stow package with gloves in Fungistat kit
For notes
3. PERSONAL HYGIENE OPERATIONS

3.1. UNDERWEAR

Set of undergarments:
- shirt
- underpants
- 2 pairs of socks (in a plastic bag with the size indication)

Change underwear once every 7 days
Change socks every 3 days

Kamelia-SM Set - worn during physical training:
- sweatshirt with short sleeves and round collar 1 ea.
- shorts 1 ea.
- socks 1 pair
- plastic bag 1 ea.

Change Kamelia-SM set once every 3 days
Wear for three days, then put aside to wear for one more day
only during physical exercises

Figure 3.1 Kamelia-SM Set
Disposable underwear set - for everyday wear:
- disposable underwear (one-size-fits-all briefs, individual) 4 pairs
- plastic multipocket 4 ea.
- plastic bag for disposable underwear 1 ea.

Wear one set for four days

Confection set – for everyday wear:
- briefs
- sportsbra or tanktop (individual)
- plastic bag for each confection set
- bigger plastic bag for confection sets stowage
- Confection sets come in individual sizes

Wear one set for three days

Swimsuit – for use during shower
- One-piece swimsuit made from elastic stockinet
- One or two swimsuits (depending on the mission length)
- Swimsuits come in individual sizes

Casual wear set — intended to provide for crew body temperature comfort during their stay in the ISS with ambient air temperature range of 20-30°C and is used for everyday wear:
- polo shirt with zipper made from dense cotton stockinet
- shorts with zippered pockets

Each plastic bag is labeled
3.2. CHANGE COVERALLS

Change coveralls maintain crewmember's comfortable body temperature under ISS ambient air temperatures in the range 20 - 30°C.

Coveralls have several types of pockets to hold documents, memos, photos, pencils, ballpoint pens, knife, etc.

Coveralls have lateral seams in thigh area with zippers. Upper part of coveralls backside with waist belt and lateral zippers forms a turndown flap (see Figure 3.2, p. 3-4 and Figure 3.3, p.3-5), allowing to use toilet without doffing coveralls.
1 - collar
2 - back yoke
3 - ID card pocket
4 - breast pocket (internal)
5 - sleeve
6 - coveralls front part
7 - belt
8 - frame pocket
9 - loop
10 - thigh pocket (right)
11 - pen-knife pocket
12 - shin pocket
13 - front yoke
14 - central zipper
15 - shoulder pocket
16 - breast patch pocket
17 - electronic calculator pocket
18 - sleeve cuff
19 - thigh pocket (left)
20 - pocket with transparent window
21 - coveralls pants bottom zipper
22 - pants leg cuff
23 - foot loop

Figure 3.2 Change coveralls (Front view)
24 - back with tucks
25 - self-belt
26 - lateral zipper
27 - coverall pants back part

Figure 3.3 Change coveralls (Back view)
3.3. WARM COVERALLS

Warm coveralls maintain crewmember's comfortable body temperature under ISS ambient air temperatures in the range 15 - 20°C. Comfortable temperatures are characterized by preservation of relatively high work capability.

The trouser legs of the coveralls are cuffed.

Coveralls have upper and lower patch pockets on the left and right.

Rounded collar has a Velcro strap fastener.

Figure 3.4 Warm coveralls
3.4. OPERATOR'S COVERALLS

Operator's coveralls maintain crewmember's comfortable body temperature under ISS ambient air temperatures in the range 20 - 30°C. Comfortable temperatures are characterized by preservation of relatively high work capability.

There are patch pockets on trousers front and back thighs. Shin pocket is located on the left trouser leg shin level. There are patch pockets on trousers seat (buttocks level).

Figure 3.5 Operator's coveralls

1 - front yoke
2 - front
3 - front sidebody
4 - zipper
5 - self-belt
6 - trousers front half
7 - breast pocket (internal)
8 - Braslet belt
9 - Braslet attachment device
10 - thigh pocket
11 - shin pocket
12 - foot loop
13 - back yoke
14 - back
15 - trousers back half
16 - back pocket
3.5. SPORTS FOOTWEAR

Sports footwear (one pair) is used during physical training

Plastic bag is labeled

3.6. TOOL BELT

Tool belt is worn by crewmember when performing any maintenance or installation/deinstallation activities.

Composition:

- tool belt 1 ea.
- pockets and fixers from 6 to 10 (depending on configuration) 1 ea.
- Bag 1 ea.

Depending on the type of activity, crewmember may use various configurations of tool belt, as well as its separate parts and components.

Tool belt comes in one size and can be adjusted at the waist using provided Velcro clip

Tool belt is made from Velcro pile to which different types of multi-pockets are attached using Velcro hook

Specific design of each multi-pocket or fixer is determined by its purpose (for screwdrivers, pencils, wrenches, etc.)
3.7. SPRUT SECURING HARNESS

Sprut securing harness is used to secure crewmember in working area during performance of various tasks

Composition:

- belt 1 ea.
- short strap 1 ea.
- long strap 2 ea.
- stowage bag

Harness set consists of belt, short and long straps, and stowage bag

Elastic components have the following letter codes:

- Д - on the long strap
- К - on the short strap

Straps are made in the shape of special-design belts (See Figure 3.7, p. 3-10), consisting of tensile and non-tensile elements, and waist belt

One of the non-tensile elements has a metal clasp with moving lock

For straps attachment, working area shall be equipped with snap hooks

Snap hook is attached to loop on the end of strap non-tensile element

Stowage bag, containing the Sprut securing harness, is made in the shape of polycaprolactam cover with Velcro fastener

Each component and separate ticket is labeled
Figure 3.6. Various options to secure crewmember in the working area

Figure 3.7 Straps

1 – tightening belt loop 6 – non-tensile elements
2 – tightening belt 7 – elastic elements
3 – loop 8 – loop
4 – clasp with moving lock 9 – snap hook
5 – loops
3.8. MOUNTER’S SET

Mounter’s set is used by crewmember when performing any maintenance or installation/deinstallation activities.

Depending on type of required work, crewmember may use Mounter's set in its various configurations, as well as its separate components.

Composition:

- apron 1 ea.
- thigh multipocket (right, left) 1 pair
- arm multipocket 1 ea.
- elbow sleeve 1 ea.
- gloves 1 pair
- wrist cuff 1 ea.
- bag 1 ea.

Front part of apron has pockets, metal D-rings, detail straps, attachment loops.

Mounter’s set includes right (with two pouches) and left thigh multipockets whose special design allows them to be attached onto crewmember's thighs.

Mounter’s set includes arm multipocket attached to elastic cuff to be worn on crewmember's left arm.

Multipocket is used for temp stowage of various small items and tools required during IFM maintenance activities.

Elbow sleeve made from elastic stockinet protects crewmember’s working arm from possible skin abrasions or lesions when performing IFM activities in narrow spaces.

Elbow sleeve together with wrist cuff provide for hand and arm protection from any neuromuscular strains possible during IFM work.

Elbow sleeve should be worn on working arm providing comfortable compression sensation; after donning elbow sleeve, wrist cuff is put on and adjusted to provide similar sensation in wrist area.

All Mounter’s set parts are individually labeled.
Figure 3.8 Mounter's set
3.9. COMFORT PERSONAL HYGIENE SET

NOTE
Comfort-1M set is made up with account of crewmember’s personal features

Comfort-1M set contents (for individual use):
- Massage brush
- Hairbrush
- Safety razor (or razor system)
- Razor blades (or set of cartridges)
- Shaving cream
- After-shave cream (or gel, jelly and balm)
- Toothpaste
- Tooth brush
- Toothpicks (or dental floss)
- Scissors
- Cuticle tongs
- Nail file
- Powder
- Hygienic lipstick (or balm for lips)
- Cosmetic cream
- Cream for hands (gel or balm)
- Deodorant

Comfort-3 set contents (for replenishment of Comfort-1M set):
- Massage brush
- Hairbrush
- Safety razor
- Razor blades or cartridges
- Shaving cream
- After-shave cream
- Toothpaste
- Tooth brush
- Toothpicks
- Scissors
- Cuticle tongs
- Nail file

For brushing teeth, use toothpaste and Oral Cavity Hygiene kit
Figure 3.9 General View of Comfort-1M Personal Hygiene Set
Figure 3.10 Open View of Comfort-1M Personal Hygiene Set
3.10. AELITA HYGIENE SET

Purpose:
Aelita set is used for hair care

Contents of Aelita hygiene set:
Aelita-И set (suffices for 3-4 uses) 4 ea.
Aelita-И (shampoo) 1 bottle
Paper tissues (vacuum-packed) 4 ea.
Plastic bags 4 ea.
Usage information, description — inside cover

3.11. PERSONAL HYGIENE ARTICLES

Personal Hygiene Articles Kit
Wet tissues for morning hygiene procedures and for daytime use (for the face, neck, hands and legs) and for treatment of personal hygiene items (3 packages per 2 days for each crewmember)

Personal Hygiene Articles Kit - З
Wet towels for hygiene after physical exercise and during change of underwear (1 towel per 3 days for each crewmember)

Personal Hygiene Articles Kit - Д
Dry towels (bath towels) for hygiene after physical exercise (1 towel per 3 days for each crewmember)

Personal Hygiene Articles Kit - Д
Dry towels (made of lint-free fabric) for hygiene after physical exercise and after wet towel use (1 towel per 3 days for each crewmember)

Personal Hygiene Articles Kit - Д
Wipes for meal utensils for treatment of meal utensils (1 package per day for each crewmember)

Personal Hygiene Articles Kit - Д
Cap-shaped wipes for oral cavity (2 cap-shaped wipes per day for one crewmember if necessary)
3.12. BERUSHI KIT
(fluffy earplugs)

Berushi kit 60 ea.

Berushi kit is intended to protect crewmember from excessive noise inside ISS (as necessary). One kit suffices for one mission.

3.13. EYE MASK

Eye mask is used to protect crewmember's eyes from light during sleep or rest. It is made from elastic stockinet with sewn-in light-tight strip.

Eye mask comes in one size and can be individually adjusted using Velcro clip.

Each crewmember is provided with 4 masks for 2 months (i.e. one mask for every 2 weeks).

3.14. SLEEPING BAG

Sleeping bag set:
- Heat-insulated bag
- Insert for sleeping bag
- Securing tapes and cords

After sleep, turn sleeping bag inside out and air it for 2-3 hrs.

Change inserts every 20-30 days.
3.15. MORPHEUS STRAPPING SYSTEM

Morpheus strapping system is intended to simulate gravity for sleeping crewmember

Composition:
- Strap – pectoral 1 ea.
- Strap – femoral 1 ea.
- Strap – sural 1 ea.
- plastic bag 1 ea.

Strap applied pressure on human body - 1-8 kgf

Straps are specially designed belts, consisting of both tensile and non-tensile elements

Tensile elements are made from highly-resilient stockinet fabric
For conveniency sake, middle parts of femoral and pectoral straps are equipped with clasps

Both ends of straps have attached tape, allowing to secure them using clamps located near sleeping bag area

Tape allows to adjust strap length, providing for pleasant body sensations and eliminating any possible discomfort, while creating sufficient gravity simulation.
Figure 3.11 Morpheus Strapping System

1 - pectoral strap
2 - femoral strap
3 - sural strap

Figure 3.12 Strap Composition

1 - tensile elements
2 - non-tensile elements
3 - loops
4 - tape
For notes
4. RUSSIAN MEDICATIONS AND MEDICAL SUPPLIES

Purpose:
Medications and medical remedies are used for medical aid (self- and mutual assistance) and to provide countermeasures for crewmember’s functional disorders.

Medical Kits List:
1. Medical kit with psychotropics (ПТ)
2. Medical kit with anti-inflammatory medications and supplies (ПВ-1)
3. Medical kit with anti-inflammatory medications and supplies (ПВ-2)
4. Medical kit with anti-inflammatory medications and supplies (ПВ-3)
5. Medical kit with anti-inflammatory medications and supplies (ПВ-4)
6. Medical kit with vitamins, prophylactic medications and supplies (П-1)
7. Medical kit with vitamins, prophylactic medications and supplies (П-2)
8. Medical kit with vitamins, prophylactic medications and supplies (П-3)
9. First-aid kit (НП-2)
10. First-aid kit (НП-Л)
11. Medical kit with dressings (ПС)
12. Medical kit with antipyretics and anti-trauma medications and supplies (ПОТ)
13. Medical kit with gastroenteric and urologic medications (ЖКУ)
14. Kit with splints
15. Medical kit with antiseptic medications (АС)
16. Medical kit with cardiac remedies and supplies (СС)
17. АСПРО (aspirin)
18. First-aid kit

Each Medical kit includes:
Case, containing Medical kit items
Medications and supplies in original packaging
Instruction for medications and supplies

Location area – Medical locker, containers 2, 8, 9
Figure 4.1 Russian Medications and Supplies

1 - “books” with tablets in Servak packaging
2 - syringe-tube with injectable medication
3 - dropper tube with eye drops
4 - tubes with swabs, saturated with liquid medication
5 - aerosol canister caps
6 - medical aid aerosol canisters
7 - aerosol canister nozzles
8 - ointment tubes
9 - vacuum-packed gauze
10 - vacuum-packed Cefecon suppositories
11 - capsicum bandage
12 - cotton turunda in vacuum packing
13 - dressing packages
14 - bactericidal bandage
15 - cotton balls in vacuum packing
GENERAL USAGE INSTRUCTIONS

Unstow Medical kit

Open and remove required remedy

Use it in accordance with instruction from Medical Kit Usage Manual and Operator Procedures for Self-care and Mutual Medical Assistance

For situation, not identified in Medical Kit Usage Manual and Operator Procedures for Self-care and Mutual Medical Assistance, ✓ MCC

If medical remedy was used — report to MCC

Use scissors to cut packaging, unpack remedies from packaging and cut gauze

Prior to using Medical kit remedies — clean hands with wet tissue from Personal hygiene kit

If items from Servak packages (blister package) are used — do not unscrew binding screws from ‘book’
Remove items by pushing them through the foil with fingers

Use all tablets, except Validol and trinitrolong sticks, with one-two swallows of potable water. Validol — dissolve under the tongue, and trinitrolong — dissolve between gums.

Discard removed, but unused tablets, capsules, and sticks

Discard used or unwrapped syringe-tubes, making sure protective cover is placed on syringe-tube needle

For unpacked and used tubes with liquid medication — screw on cap and replace tube in pallet of Servak packaging and then in Medical kit

Use mutual assistance to apply ointment or dressings whenever possible
4.1. SYRINGE TUBE

1. Unstow Medical kit - СС, ЖКУ or НП-2
 Unpack syringe tube from Medical kit - СС, ЖКУ or НП-2

2. Turn ribbed knob (to puncture drug container)

3. Return knob to initial position
 Turn again

4. Rub injection site with alcohol

5. Remove needle cap
 Jab needle into the soft tissue of thigh or upper arm

6. Inject medication
 Remove needle

7. Discard syringe-tube and needle cap into sharps container

8. Stow Medical kit

4.2. CAMETHON AEROSOL CANISTER
(for respiratory infections)

1. Unstow from Medical kit ПВ-2: Camethon aerosol canister and inhaler

2. Cut open the packaging using scissors
 Unpack canister
 Remove protective cap
 Attach inhaler to canister

3. Insert inhaler end into the mouth
 While inhaling, depress inhaler ring and hold depressed for 1-1.5 sec

4. Remove inhaler from canister
 Wipe off inhaler with wipe from Personal Hygiene Kit

5. Recap canister
 Put canister and inhaler into Medical kit
 Stow Medical kit

6. Discard used wipe
4.3. GALAZOLIN NASAL DROPS

1. Unstow ‘book’ with Galazolin bottle from Medical kit ПБ-2
2. Take bottle from holder
3. Unscrew and remove cap from the bottle
4. Cut off the end of bottle dropper
 Discard it
5. Apply 2 drops into each nostril
6. Screw cap on the bottle (to the hard stop)
 Secure bottle in holder
7. Stow Medical kit

4.4. DROPPER TUBE WITH EYE DROPS

1. Unstow package with eye dropper tubes from Medical kit ПОТ, ПВ-2
 Unpack one dropper tube from the pallet
2. Turn knob of the dropper tube cap (allowing solution to flow into dropper)
3. Unscrew and remove cap
4. Pull lower eyelid aside and squeeze out 1-2 drops on it
5. Recap dropper tube
 Put dropper tube into packaging, then replace into Medical kit
6. Stow Medical kit
4.5. CEFECON SUPPOSITORIES

NOTE
Store suppositories at ambient temperature under 20 - 25°C

1. Unstow package with suppositories from Medical kit ПВ-2
2. Cut open the packaging using scissors from Medical kit НП-2, АСПРО, or First-Aid
3. Cut and open packaging of one suppository
4. Insert suppository into the rectum
5. Stow unused suppositories into Medical kit
6. Stow Medical kit

4.6. OLASOL AEROSOL SPRAY
(in case burn)

1. Unstow canister from Medical kit ПОТ
2. Cut open the packaging, using scissors from Medical Kit НП-2, АСПРО, or First-Aid
 - Take out Olasol spray canister
 - Remove protective cap
 - Attach nozzle to the canister
3. Spray burned surface for 0.5-1 sec from a distance of 10-15 cm
4. Detach nozzle from canister
 - Wipe off, using a clean gauze from Medical kit ПС
5. Recap spray canister
 - Stow in Medical kit
6. Stow Medical kit
4.7. TUBE WITH AQUA AMMONIA
(in case of loss of consciousness)

1. Unstow tube with aqua ammonia from Medical kit CC
2. Unscrew cap with attached swabstick pre-moistened in aqua ammonia
3. Place swabstick to patient’s nose and hold there until patient regains consciousness
4. Screw cap with attached swabstick to tube housing
5. Return tube into kit
6. Stow Medical kit

4.8. TREATMENT OF SMALL SKIN WOUNDS
(abrasions, scratches)

1. Remove from Medical Kit AC the tube with one of the following:
 iodine solution labeled "Й"
 alcohol (ethanol) labeled "С"
 Brilliant Green (skin antiseptic) solution labeled "З"
2. Unscrew cap with attached cotton swabstick pre-moistened with medication
3. Swab affected area
4. Screw cap with attached swabstick to tube housing
5. Replace tube back into Medical kit
6. Unpack bactericidal bandage from Medical kit ПС
7. Cut open the packaging containing bandage using scissors from Medical kit АСПРО, НП-2, or First-Aid
8. Unstow bandage from the package (if needed, cut a strip of the required size)
9. Remove protective film from the bandage
10. Apply the gauze side of bandage onto affected area
 Press the sides of the bandage to the skin

11. Stow unused bandage into package and replace in Medical kit

12. Stow Medical kit

4.9. TUBE WITH OINTMENT

1. Unstow and cut open the packaging containing gauze or tissue using scissors from Medical kit АСПИРО, НП-2, or First-Aid

2. Cut a piece of gauze or tissue approximately 2-3 times larger than the affected area

3. Remove tube with ointment from the package (breaking sealant foil in the tube nozzle, if necessary)

4. Squeeze an adequate amount of ointment onto gauze or tissue

5. Close tube
 Replace tube into Medical kit

6. Evenly distribute ointment over gauze or tissue using the flat tipped plastic stick from either First Aid kit or from Medical kit

7. Place gauze onto affected area
 Securing it by 3-4 layers of gauze on the top
 Cut and tie (elastic bandaging can be used)

8. Wipe the flat tipped plastic stick clean

9. Stow scissors and flat tipped plastic stick

10. Stow First-Aid Kit and Medical kit

11. Discard leftovers of gauze and packaging
4.10. CAPSICUM BANDAGE

1. Unstow package with bandage from Medical kit ПВ-2
 Cut open the packaging using scissors from Medical kit АСПРО, НП-2, or First-Aid

2. Cut a piece of bandage (sized to overlap the affected area)

3. Remove protective film
 Apply working side with capsicum onto the affected area

4. Stow unused bandage into packaging and replace in Medical kit

5. Stow Medical kit

4.11. DRESSING PACKAGE, COTTON BALLS AND GAUZE

1. Unstow appropriate package from Medical kit ПС
 Cut open the packaging using scissors from Medical kit АСПРО, НП-2, or First-Aid

2. Use as required

3. Discard:
 leftovers of gauze
 packaging
 used cotton balls

4. Stow Medical kit
4.12. IMMOBILIZATION SPLINTS

1. Unstow splints from the Kit
 Unstow and cut open a gauze package

2. Splint limb
 Secure the splint with gauze

3. Stow unused splints and gauze in Medical kit
 Stow Medical kit

Fig. 4.2 Splint Kit

1 - cover
2 - manual
3 - splints
4 - gauze dressings
5 - tourniquet (silicone or rubber tube)
4.13. STOPPING MAJOR BLEEDING IN EXTREMITIES

CAUTION

Do not apply tourniquet for more than 2 hours

1. Unstow tourniquet (rubber or silicone tube) from Splint kit
2. Apply tourniquet above bleeding site
 Tie tube ends
 Record time of tourniquet application
 (loosen tourniquet after 2 hours)
3. Replace tourniquet into the kit after having stopped the bleeding
4. Stow Medical kit

4.14. АСПРО (WATER SOLUBLE ASPIRIN)

1. Remove package containing water soluble aspirin from Medical kit АСПРО
2. Add (approximately 75 ml) of potable water to the package contents
3. Dissolve the package contents in water (by shaking it gently)
 Drink the aspirin solution
4. Discard used packaging
4.15. INSTRUCTIONS FOR USAGE OF FIRST-AID KIT CONTENTS

<table>
<thead>
<tr>
<th>Indication</th>
<th>Remedy code number and name</th>
<th>Daily dosage</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>3 Analginum</td>
<td>1X2 - 3</td>
<td>“book” II</td>
</tr>
<tr>
<td></td>
<td>4 Aspirin</td>
<td>1X2 - 3</td>
<td>“book” II</td>
</tr>
<tr>
<td>Chest (cardiac) pain</td>
<td>7 Validol</td>
<td>1 tab. under the tongue</td>
<td>“book” I</td>
</tr>
<tr>
<td></td>
<td>8 Nitroglycerin</td>
<td>1 tab. under the tongue</td>
<td>container #4</td>
</tr>
<tr>
<td>Impairment of cardiac rhythm</td>
<td>9 Panangin</td>
<td>1 - 2X2 - 3</td>
<td>“book” I</td>
</tr>
<tr>
<td></td>
<td>10 Isoptin (Verapamil)</td>
<td>1X3</td>
<td>“book” II</td>
</tr>
<tr>
<td>Hypertension</td>
<td>11 Papazol</td>
<td>1X2 - 3</td>
<td>container #6</td>
</tr>
<tr>
<td>Fainting conditions</td>
<td>63 Aqua Ammonia</td>
<td>inhale as needed</td>
<td>pallet for containers</td>
</tr>
<tr>
<td>Hypotension</td>
<td>20 Caffeine</td>
<td>1X2 - 3</td>
<td>“book” II</td>
</tr>
<tr>
<td>Hot flushes of the head</td>
<td>164 Furosemid (Lasix)</td>
<td>1 tab. (once)</td>
<td></td>
</tr>
<tr>
<td>Difficult breathing, asthma</td>
<td>15 Atropine</td>
<td>1 ea. i.m.</td>
<td>lid</td>
</tr>
<tr>
<td>Cough</td>
<td>81 Libexin (Tusuprex)</td>
<td>1X2 - 3</td>
<td>“book” I</td>
</tr>
<tr>
<td>Running nose</td>
<td>17 Inhacamf</td>
<td>inhale</td>
<td>container #1</td>
</tr>
<tr>
<td>Emotional stress</td>
<td>18 Phenibutum</td>
<td>1X2 - 3</td>
<td>“book” I</td>
</tr>
<tr>
<td>Fatigue</td>
<td>20 Caffeine</td>
<td>1X2 - 3</td>
<td>“book” II</td>
</tr>
<tr>
<td>Insomnia</td>
<td>22 Radedorm (Nitrazepam)</td>
<td>1-2 tabs. Prior to sleep</td>
<td>“book” II</td>
</tr>
<tr>
<td>Itching, nettle rash (urticaria), edema</td>
<td>47 Suprastatin</td>
<td>1X2 - 3</td>
<td>“book” II</td>
</tr>
<tr>
<td>Transport sickness, nausea, vomiting</td>
<td>15 Atropine</td>
<td>1 ea. i.m.</td>
<td>lid</td>
</tr>
<tr>
<td>Gastro-intestinal disorders</td>
<td>25 Levomycetin (Chloromycetin)</td>
<td>1X4</td>
<td>“book” II</td>
</tr>
<tr>
<td>Indication</td>
<td>Remedy code number and name</td>
<td>Daily dosage</td>
<td>Location</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Inflammatory diseases</td>
<td>26 Madribon (Sulfadimethoxonum)</td>
<td>1X1 - 2</td>
<td>“book” II</td>
</tr>
<tr>
<td></td>
<td>27 Oletetrinum</td>
<td>1X4 - 5</td>
<td>“book” II</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>28 Bellalgin</td>
<td>1X2 - 3</td>
<td>container #2</td>
</tr>
<tr>
<td>Constipation</td>
<td>125 Senade</td>
<td>1 tab. Prior to sleep</td>
<td>“book” II</td>
</tr>
<tr>
<td>Traumatic dermatitis, burns</td>
<td>64 Methyluracil ointment</td>
<td>Use as needed</td>
<td>pallet for containers</td>
</tr>
<tr>
<td>Minor traumas, eye and nose mucous membrane infections</td>
<td>102 Tetracycline ointment</td>
<td>Use as needed</td>
<td>pallet for containers</td>
</tr>
<tr>
<td>Skin abrasions and scratches, minor traumas</td>
<td>72 Bactericidal bandage</td>
<td>apply where needed</td>
<td>pallet for dressings</td>
</tr>
<tr>
<td>Various lesions</td>
<td>74 bandage gauze 1.5X6</td>
<td>apply where needed</td>
<td>pallet for dressings</td>
</tr>
<tr>
<td></td>
<td>50 dressing package</td>
<td>apply where needed</td>
<td></td>
</tr>
<tr>
<td>Per indication</td>
<td>75 scissors</td>
<td></td>
<td>pallet for “books”</td>
</tr>
<tr>
<td></td>
<td>76 flat tipped plastic stick</td>
<td></td>
<td>pallet for containers</td>
</tr>
</tbody>
</table>
For notes
5. MEANS FOR MICROGRAVITY COUNTERMEASURES

5.1. BRASLET AND BRASLET-M UNITS

Purpose:
Braslet and Braslet-M units are countermeasure means intended for compression of proximal parts of lower extremities in order to artificially create blood afflux into these areas. Braslet and Braslet-M units should be used during acute phase of adaptation to microgravity for prevention of its adverse effect on cardiovascular system.

Braslet Components:
- belt 1 ea.
- compression cuffs (left and right) 1 pair
- stowage bag 1 ea.

Braslet-M Components:
- compression cuffs (left and right) 1 pair
- stowage bag 1 ea.

During operation, compression cuffs are attached to belt using pull-up straps.

Belt is used to secure compression cuffs in working position on crewmember's thighs using freely moving pull-up straps (Figure 5.2 p. 5-2).

Compression cuffs Braslet and Braslet-M units in their working state create compression in upper thirds of crewmember's thighs (see Figure 5.3 p. 5-3, and Figure 5.4 p. 5-4).
This causes a part of circulating blood volume to relocate from upper body to lower extremities, which corrects the adverse hemodynamic effect of microgravity, thus improving crewmember's working capability.

Compression cuff in Braslet and Braslet-M units is a combination of alternating multi-layer tensile and non-tensile elements.

Elastic forces generated by distension of tensile elements create necessary pressure on body surface.

Geometric shape of non-tensile elements gives to compression cuff a certain configuration that allows to position it along a skewly ascending line on the thigh's upper third providing a required tight fit.
Cuff tightening on crewmember's thigh is performed using tightening strap with adjustable clasp.

Tightening strap has a digital compression scale with working zones indication from “1” thru “6” (Figure 5.1) and from “1” thru “5” (Braslet-M) (Figure 5.2).

Braslet and Braslet-M units are packed into a stowage bag.

Figure 5.1 Braslet

1 - belt
2 - pull-up strap
3 - compression cuff
4 - tightening strap
5 - compression scale

Figure 5.2 Braslet-M

1 - compression cuff
2 - tightening strap
3 - compression scale
Figure 5.3 Braslet Compression Cuff

1 - loop
2 - buckle
3 - movable link
4 - posterior elastic element
5 - middle elastic element
6 - anterior elastic element
7 - buckle
8 - movable link
9 - posterior lateral non-tensile element
10 - posterior non-tensile element
11 - anterior non-tensile element
12 - lateral anterior non-tensile element
13 - bolt loop
14 - tightening strap
15 - cuff index
16 - plate
Figure 5.4 Braslet-M Compression Cuff

1 - clamp
2 - holder
3 - loop
4 - posterior elastic element
5 - middle elastic element
6 - anterior elastic element
7 - bolt loop
8 - posterior lateral non-tensile element
9 - cuff index
10 - posterior non-tensile element
11 - anterior non-tensile element
12 - lateral anterior non-tensile element
13 - patch
14 - tightening strap
5.2. PENGUIN-3 CONSTANT-LOADING SUIT

Purpose:
To prevent unfavorable effects of microgravity on human body during space flight
Countermeasures are provided by application of resistance loads on the
musculoskeletal system and by additional loads on the skeletal muscles generated
in response to body and leg movement
Penguin-3 is intended for in-flight wear

NOTE
1. To maximize Penguin-3 suit effectiveness: (i) the suit must be worn constantly,
 (ii) strap tension should be optimized (subjectively measured tension load should
 be ~15 kg), and (iii) periodic pedaling leg movements should be accomplished
 for 5-10 min, 6-8 times per day
2. Replace the suit after 45 days of wear

5.2.1. SUIT DONNING AND ADJUSTMENT
(See Figure 5.5 p. 5-7)

NOTE
1. If the suit has not been adjusted - adjust it per usage manual in the chest pocket
 or per Sect. 5.2.3 p. 5-6
2. If the belt is uncomfortable when tightened, unbuckle it
3. If there is pain sensation in the lumbar region - decrease the tension of the back
 tension straps and increase the tension of the chest tension straps

1. Loosen chest tension straps and back tension straps using adjustment buckles (#2, #3)
 Unzip central zipper (#25), unfasten belt adjustment buckle (#1) and horizontal chest
 strap (#20) buckle
2. Don lower part of the suit
 Fasten the belt buckle (#1) slightly tightening the belt (#21)
3. Don boots and close zipper
 Engage four suit trouser hooks (#31) to each boot
 Don the top part of the suit
4. Uniformly tension chest and back tension straps using adjustment buckles (#2, #3)
 until belt (#21) is positioned on the waistline
 Tighten the belt
5. Fasten the horizontal chest strap (#20)
6. Close central zipper (#25)
5.2.2. PREPARATION FOR PEDALING
(See Figure 5.5 p. 5-7)

1. Put stirrups (#26) on boots and secure with Velcro clip
2. Secure the stirrup strap (#19) to the stirrup strap adjustment buckle (#4)
 Adjust tension as required (choosing the highest possible load that does not cause
 any unpleasant or painful sensations)

5.2.3. PENGUIN SUIT ADJUSTMENT
(See Figure 5.5 p. 5-7)

1. Loosen straps by using adjustment buckles (#2 through #10)
2. Don the suit
 Tighten the belt (#21) on the waist line using belt adjustment buckle (#1)
3. Tighten adjustment straps under pants cuffs (#29, #30) using height adjustment
 buckles (#10) (two on each side) so that the buckle (#4) should stay below knee
4. Tighten front leg tension straps using buckles (#5) (two on each side)
 Tighten slanted back leg tension straps using adjustment buckles (#6, #9) (with orange
 tabs) so that adjusted angle A equals \(\sim 135 \) degrees
5. Tighten straight back leg tension straps using adjustment buckles (#7, #8) so that adjusted
 angle B equals \(\sim 135 \) degrees
6. Loosen belt (#21) using belt adjustment buckle (#1)

 NOTE
 Keep all previously adjusted angles (A and B) at set values
7. Tighten chest and back straps using adjustment buckles (#2, #3) so that loosened
 belt (#21) will be positioned on the waistline (subjectively measured tension load
 on shoulders should be \(\sim 15 \) kg)
8. Fasten the horizontal chest strap (#20)

 NOTE
 Readjust suit as needed to increase or decrease tension load levels
Figure 5.5

1. Belt adjustment buckle
2. Chest tension strap adjustment buckles
3. Back tension strap adjustment buckles
4. Stirrup strap adjustment buckles
5. Front leg tension strap adjustment buckles
6. Slanted outer back leg tension strap adjustment buckles
7. Straight inner back leg tension strap adjustment buckle
8. Straight outer back leg tension strap adjustment buckles
9. Slanted inner back leg tension strap adjustment buckles
10. Height adjustment buckles
11. Chest tension straps
12. Front leg tension straps
13. Slanted inner back leg tension straps
14. Straight inner back leg tension straps
15. Uniformly tensioned leg tension straps
16. Slanted outer back leg tension straps
17. Straight outer back leg tension straps
18. Back tension straps
19. Stirrup strap
20. Horizontal chest strap
21. Belt
22. Pockets for accessing buckle 2
23. Pockets for accessing buckle 3
24. Pockets for accessing buckles 6, 7, 8, 9
25. Central zipper
26. Stirrup
27. Footstep
28. Shoes
29. Cuffs
30. Cuffs
31. Hooks for securing the suit to the boots
32. Pocket
Figure 5.6 Penguin-3 Suit
5.3. THK-Y-1 TRAINING-LOADING SUIT

Purpose:
Worn during physical exercises on the treadmill
Use after fit adjustment
Individually distinguish by the color of the waistband pads

Composition:
Bag
THK-Y-1 Training-loading suit
Replaceable hygiene covers for shoulder pads (4 pairs) – 8 ea.

Suit Adjustment (Figure 5.7, Figure 5.8 p. 5-10):

NOTE
Marks on waistband are numbered 42 through 54, which corresponds to crewmember's chest circumference, ranging from 84 to 108 cm

1. Straighten out the suit
Remove waistband pads (#5, #6) and unfasten Velcro on waistband from behind
Put the left end of the waistband on the mark on the right end according to the crewmember's size and fasten

2. waistband fit:
 waistband fits snug below the waist
 extensions are positioned on the mid-thigh area

3. Join waistband pads using the mark on the pad corresponding to that on the waistband
Place pads (#5, #6) on the waistband
Move the shoulder straps with strap covers (#7) to a position comfortable for crewmember
Adjust shoulder straps (#3, #4) height and secure power strap strip (#14) in the buckle
Tighten chest pad strip (#25) on the chest
Tighten belt strap (#12)

4. Use extensions to attach the suit to the treadmill restraint system
Adjust length of extensions according to the marks (depending on crewmember's height)
Figure 5.7 Training-Loading Suit THK-Y-1 Components (Front View)

Figure 5.8 Training-Loading Suit THK-Y-1 Components (Back View)

1 – waistband left side
2 – waistband right side
3 – left shoulder strap
4 – right shoulder strap
5 – right waistband pad
6 – left waistband pad
7 – shoulder strap cover
8,22,27,29 – Velcro fasteners
9,23 – marks
10 – waistband left side belt
11 – waistband right side belt
12,17,11,13,16,28 – buckles
14 – power strap strip
15 – leash holder
19,21 – leash buckle
24 – waistband pad holder
25 – chest pad strip
26 – chest pad
30,31,32,33 – loops
34 – leash
Figure 5.9 Training-Loading Suit THK-Y-1 (Front View)

Figure 5.10 Training-Loading Suit THK-Y-1 (Back View)
5.4. CYCLE ERGOMETER ВБ-3

Purpose:
Cycle ergometer ВБ-3 is designed for multi-purpose physical exercises is intended to prevent unfavorable effects of long-duration space flight and as cycle ergometer for performance of functional tests.

Figure 5.11 Cycle Ergometer in Working Configuration

1 - Bracket 7 - Seat Casing 13 - Connecting Rod Fixer Latch
2 - Handle 8 - Screw 14 - Generator Assembly
3 - Rod 9 - Control Panel 15 - Toe Clips
4 - Sleeve 10 - Rod 16 - Frame
5 - Seat 11 - Sleeve 17 - Fixer Latch
6 - Belt 12 - Connecting Rod 18 - Bracket

Pedal shaft power is set discretely from ergometer control panel:
XX (idle mode), 100, 125, 150, 175, 200, 225, 250 W and is maintained constant within a range of 40-80 rpm

Available modes are: XX (idle mode), active pedaling (under load) mode, free movement mode

For idle mode (xx) pedal power is no more than 50 W
When pedaling at a speed higher than 80 rpm there is a sharp increase in a load on the pedals
During free movement mode -- there is no load on pedal shaft and pedals are rotated in direction opposite to that in XX (idle) and active pedaling modes.
Generator assembly and seat are attached to the frame using telescopic rods, allowing their adjustment for crewmember's convenience

Cycle Ergometer design allows to adjust seat angle within 0 - 70° range (relative to horizontal frame), with six set positions possible, as well as provides for generator assembly movement up to 300 mm along horizontal axis with seven set positions possible.
Pedal is used for foot or hand pedaling. During foot pedaling, pedal is secured on handle via spring fixer latch. During hand pedaling, pedal is removed from handle and stored in seat casing pocket.
Control Panel Controls and Its Display Messages (see Figure 5.13 p. 5-13):

Indicator Displays the following parameters (only during pedaling, since the indication is generator-powered):
- Pedal shaft rotation speed
- Selected resistance load (in Watts)
- Total workout time during current session
- Workout time of selected resistance load
- Total work during current session
- Conventional mileage
- Current indication mode

Buttons Δ, ∇ (1, 2) Scroll through parameters

Button $[X]$ (3) To reset the following parameters:
- Total workout time during current session
- Workout time of selected resistance load
- Total work during current session
- Conventional mileage

Buttons Δ, ∇ (4, 5) Scroll through available resistance load settings

Rpm indicator scale range — 0---120 rpm

Scale factor in sub-ranges:
- 0---50 rpm sub-range 5 rpm
- 50---70 rpm sub-range 1 rpm
- 70---120 rpm sub-range 5 rpm

Parameter icons - to display various parameters
Currently active indication mode is highlighted with arrow \rightarrow, to the right of highlighted (active) icon.

Indication mode selection is done using buttons Δ and ∇ (1, 2) (to the left of Cycle Ergometer Control Panel)

Depending on selected mode the following digital data are displayed in the center of readout:
- workout time of selected resistance load
- total workout time during current session
- conventional mileage
- total work during current session

Workload setting icons show all available workload settings
Currently active workload setting is highlighted with arrow sign \rightarrow, to the left of the highlighted (active) icon.

Workload setting is selected using buttons Δ and ∇ (4, 5) (to the right of Cycle Ergometer Control Panel)

Cycle ergometer ВБ-3 location: pnl 121
5.4.1. CYCLE ERGOMETER INITIAL SETUP
(Figure 5.11 p. 5-12)

OPTION 1

Figure 5.14 Cycle Ergometer in Configuration for Storage under panel 121 (Option 1)

1. Arrange panel 121 into Cycle Ergometer usage position

2. Remove belt (#6) from right connecting rod and unfasten belt buckle
 Release the detachable end of seat rod by removing elastic hold-down from handles on the fixer latch of the rod end

3. \(\downarrow\) the handles (#2) of the rod securing assembly
 Align the fixer latch fingers with the bracket alignment hole (#1) and release handles
 Lift seat vertically
 Secure disconnected end of seat rod (#3) in frame bracket (#1)

4. Arrange seat (#5) into working configuration, by pulling seat rod sleeve (#4) in the arrow direction
 Secure seat and release sleeve

5. Remove control panel from the seat casing (#7) pocket
 Arrange control panel into working configuration in seat's handrail

6. Detach generator assembly (#14) by pulling aside the fixer latch (#17) button
 Lift the generator assembly until first fixed position is reached

7. Arrange generator assembly into working configuration by pulling sleeve (#11) in the arrow direction and secure generator assembly by releasing sleeve
8. Unlock connecting rod (#12) of pedal gear shaft from transport configuration:
 Pull out fixer latch (#13) handle and turn it in the arrow direction to OPEN position
 (see Figure 5.15 p. 5-16)
 Handle pin should enter the short chase on the latch body

9. During foot pedaling:
 ✓ pedal is secured on handle (see Figure 5.12 p. 5-13 and Figure 5.16 p. 5-16)

 During hand pedaling:
 ▼ fixer latch and remove pedal from the handle
 Stow pedal in seat casing pocket
 Button down the seat casing pocket
OPTION 2

Figure 5.17 Cycle ergometer position in non-working configuration (Option 2)

1. Arrange seat (#5) into working configuration, by pulling seat rod sleeve (#4) in the arrow direction
 Secure seat and release sleeve

2. Move control panel from non-working to working position

3. Unlock generator assembly (#14) from transport configuration by pulling fixer latch button (#17)
 Lift generator assembly to reach the first fixed position

4. Arrange generator assembly into working position by pulling the sleeve (#11) in arrow direction and secure generator assembly by releasing the sleeve

5. Unlock connecting rod (#12) of pedal gear shaft from transport configuration:
 Pull out fixer latch (#13) handle and rotate in arrow direction to OPEN position
 Handle pin should enter the short chase on fixer latch body

6. During foot pedaling:
 √ pedal is secured on handle (see Figure 5.12 p. 5-13 and Figure 5.16 p. 5-16)

 During hand pedaling:
 † fixer latch and remove pedal from the handle
 Stow pedal in seat casing pocket
 Button down the seat casing pocket
5.4.2. CYCLE ERGOMETER ADJUSTMENT

1. Pull out fixer latch sleeve on corresponding rod in the arrow direction
2. Adjust generator assembly or seat position as comfortable
3. Release fixer latch sleeve
4. Move generator assembly or seat until it clicks

5.4.3. CYCLE ERGOMETER STOWAGE

OPTION 1 (Figure 5.14 p. 5-15)

1. Install pedal to foot pedaling position (if necessary):
 Unstow pedal from seat casing pocket
 ¶ fixer latch
 Install pedal onto handle
2. Secure connecting rod (#12) of pedal gear shaft by moving connecting rod fixer latch (#13) into closed position
3. Secure generator assembly in frame bracket by pulling sleeve in arrow direction
 Lower generator assembly on frame so that fixer latch would enter the opening on generator assembly
4. Remove control panel from seat handrail
 Stow control panel into seat casing pocket
 Button down the seat casing pocket
5. Fasten the belt (#6)
6. Disconnect seat rod (#3) from frame (#16), by depressing handles (#2) of rod fixer latch and clear rod fixer latch fingers of bracket (#1) hole
 Release rod fixer handles
7. Lower seat onto generator assembly (#14), by engaging belt (#6) on the right connecting rod of pedal gear shaft
8. Secure disconnected rod (#3) end on seat, by donning elastic hold-down on rod fixer latch handles (#2)
9. Lower cycle ergometer under floor panel 121, by closing panel 121
OPTION 2 (Figure 5.17 p. 5-17)

1. Install pedal to foot pedaling position:
 • Unstow pedal from seat casing pocket
 • Fixer latch
 • Install pedal onto handle

2. Secure connecting rod (#12) of pedal gear shaft by moving connecting rod fixer latch (#13) into closed position

3. Secure generator assembly in frame bracket by pulling sleeve in arrow direction
 Lower generator assembly on frame so that fixer latch would enter the opening on generator assembly

4. Pull sleeve (#4) in arrow direction
 Put seat (#5) into horizontal position
 Release sleeve

5. Move cycle ergometer control panel on seat handrail from working to non-working position
5.4.4. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable cause</th>
<th>Corrective action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance load is not affected by selected resistance load:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) low resistance load</td>
<td>Poor contact in cable connection between generator assembly and control panel</td>
<td>√ cable connection (connector "Ш" on generator assembly)</td>
</tr>
<tr>
<td>2) medium resistance load</td>
<td>Poor contact in cable connection between generator assembly and control panel</td>
<td>√ cable connection (connector "ШЗ" on control panel)</td>
</tr>
<tr>
<td>3) high resistance load</td>
<td>One of generator's coils is shorted</td>
<td>Work in the available operating mode until cycle ergometer is replaced</td>
</tr>
<tr>
<td>Generator assembly or seat cannot be secured in desired position</td>
<td>Fixer latch assembly mechanism is broken</td>
<td>Work in the available position until cycle ergometer is replaced</td>
</tr>
<tr>
<td>Pedal movement is too stiff</td>
<td>Pedal mechanical problem, ball bearing might be jammed</td>
<td>Release pedal ball bearing fastening nut</td>
</tr>
<tr>
<td>Toe clip gets spontaneously unclasped</td>
<td>Toe clip lock failure</td>
<td>Tie straps in a knot</td>
</tr>
<tr>
<td>When pedaling, connecting rod fixer latch makes clicking noises</td>
<td>Connecting rod fixer latch is set to rod fixing position</td>
<td>Set fixer latch to "ОТКП" (Open) position</td>
</tr>
<tr>
<td>Generator assembly cannot be automatically secured in stowed configuration</td>
<td>1. Fixer latch gets jammed in the body</td>
<td>Secure generator assembly by pulling off fixer latch button</td>
</tr>
<tr>
<td></td>
<td>2. Locking axes of the mated parts are misaligned</td>
<td></td>
</tr>
</tbody>
</table>

All other cycle ergometer problems should be corrected per MCC instructions
5.5. CHEST EXPANDER SET

Purpose:
To be used during strength physical exercise for various muscle groups:
- short expander - for shoulder muscles
- medium expander - for trunk muscles
- long expander - for leg and trunk muscles

Expander set is stowed in the packing bag

Expander - is a set of bungee cords
Long and short expanders are supplied with shoulder pads with changeable covers

Figure 5.18 Bag with Expander Set
5.6. TONUS-3 MYOELECTROSTIMULATOR

Purpose:
Muscle electrostimulation, countermeasure for neuro-muscle deconditioning

Hardware Components (see Figure 5.19 p. 5-22):
- TONUS-3 IMPULSE GENERATOR
- TONUS bag with electrodes
- TONUS bag with electrodes
- TONUS bag with cables
- electrodes (thigh, calf, abdomen-back, trapezoids)
- electrodes (thigh, calf, abdomen-back, trapezoids), cables
- cables 2, 3, 4

Specifications:
Power supply: from ППС-24
Power consumption: 8 W

Figure 5.19 General View of Myoelectrostimulator TONUS-3 and kits

Location:
TONUS-3 Medical locker
Bags with electrodes and cables Medical locker, container 3
Impulse generator controls (on front panel) (see Figure 5.20):

- sw PWR → ON
- sw OPERATIONAL MODE - selection of stimulation signal duration:
 - - fast contraction mode - slow contraction mode
- sw PROGRAM - 4 programs (I, II, III, IV)
- knobs 1-6 - adjustment of current pulse amplitude of the stimulating signal
- cnctr OUTPUT - for connection of cable with electrodes
- electrode application sites mnemonic diagram

sw PROGRAM → I:
- muscle stimulation:
 - shin anterior and posterior surface
 - thigh anterior surface
- color - black, red

sw PROGRAM → II:
- muscle stimulation:
 - shin anterior and posterior surface
 - thigh posterior surface
- color - black, yellow
sw PROGRAM → III:
muscle stimulation:
 shin anterior and posterior surface
 abdomen and back
 color - black, green

sw PROGRAM → IV
trapezoids stimulation:
 color – blue

On impulse generator back panel – connector PWR and grounding strap terminal

Electrode set - for one crewmember

Electrode straps are color coded according to application site

Trapezoid muscle electrodes are secured via two vertical and horizontal straps (straps are secured with Velcro - on the back and with hook - on the front)

Electrode connectors are color-coded according to mnemonic diagram seen on the device

Cable 1 electrode leads from right shin, left shin, right thigh, left thigh, abdomen, back to TONUS IMPULSE GENERATOR
Cable 2 electrode leads from trapezoids to TONUS IMPULSE GENERATOR
Cable 3 connects CHIBIS suit to TONUS IMPULSE GENERATOR
Cable 4 electrode leads from thigh, shin, abdomen and back to CHIBIS suit
Cables 3+4 electrode leads from thigh, shin, abdomen and back to TONUS IMPULSE GENERATOR

Figure 5.22 Contents of bag labeled "Кабели Тонус" (Tonus Cables)

Figure 5.21 Contents of bag labeled "Электроды Тонус" (Tonus Electrodes)
Figure 5.23 Application of abdomen-back and trapezoid electrodes with cables

Figure 5.24 Application of thigh and shin electrodes with cables
5.7. CHIBIS — PREVENTIVE LBNP SET

Purpose:
To provide negative pressure around the lower part of the crewmember’s body intended for training and prevention of cardiovascular disorders

Technical Characteristics:

- Negative pressure range: from 10±3 to 60±5 mmHg
- Safety valve negative pressure setpoint: 60±5 mmHg
- Compression force inside Chibis suit (ПВК-1): from 10 to 60 kgf
- Power supply from ППС-24
- Power consumption: ≤ 25 W
- ПВК-1 operating life: 200 donning cycles
- ПВК-Д unit operating life: 200 hours

Location:
- ПВК-1: panel 126
- ПВК-Д unit: panel 230
Components:
- Chibis suit (ПВК-1)
- Chibis suit pressure control unit (ПВК-Д)
- Hose harness in kit
- ПВК-1 removable waist seal curtain in kit

Figure 5.25 Chibis Suit (ПВК-1)

When folded for storage, pants (drum and corrugated sheath) are secured with shackle strap.
Purpose of Suit Pressure Control:
To create negative pressure inside the Chibis Suit

Suit Pressure Control Contains:
- Micropump
- Radio interference filter
- Pressure sensor

Suit Pressure Control Switch Positions:
- AUTO VACUUM: power on
- OFF: power off
- MANUAL VACUUM DUMP: remote power control from control unit handle
Figure 5.27 Suit Pressure Control and Hose Harness

A Suit Pressure Control
B Hose harness
C АЗ 2-1 circuit breaker switch view
1 3-position switch
2 power indicator light
3 cable with Suit Pressure Control handle
4 ПВК hose
5 ИКД hose
6 connector Π with filter (for micropump ПВК hose connection)
7 power cable connector
8 telemetry data cable connector
9 connector Ш4 (for cable with ПВК-Д control unit handle connection)
10 connector Д (for ИКД hose pressure sensor connection)
11 П2 connector filter components
12 Suit Pressure Control control handle
13 Lever switch on control handle
14 ПВК hose connector for ПВК-1 suit connection
15 ИКД hose connector for ПВК-1 suit connection
1. If the set negative pressure is not established in ПВК-1 while micropump is operating and curtain is well-sealed, check filter mesh screen for any obstructing debris:
 - Unscrew filter nut on connector П2 of Suit Pressure Control
 - Remove filter flanged socket by pulling at connector
 - Remove filter mesh screen, clean it and reinstall into place
 - Reinstall flanged socket into place and tighten nut to the stop
2. To facilitate mating, periodically grease air connectors (grease is located in ЗИП-1 ОРЛАН-ДМ kit pocket)

5.7.1. WAIST SEAL CURTAIN/CORRUGATED SHEATH

1. Obtain adhesive plastic sheet from ПВК-1 suit kit pocket
2. Patch the punctured surface with plastic sheet:
 - Apply the preparation patch onto the external surface of the sheath
 - After 2 min remove the patch (for sheath surface cleaning)
 - Apply a new smaller patch onto the prepared site, not touching it with fingers
 - Warm up the new patch with palm and smooth it up (patch is transparent)

5.7.2. REMOVABLE WAIST SEAL CURTAIN

1. Clasps on shoulder straps ↔ drum
2. Open cable tensioning lock on the drum and free up cable
3. Remove waist seal curtain from the drum
4. Place new curtain on the drum
 - √ marks on the back of the drum and curtain are aligned
5. Put cable in the chase and wind it twice around the drum
6. Engage the cable tensioning lock
7. Shoulder strap clasps → ↔ drum
5.8. KENTAVR PROTECTIVE SUIT

Purpose:
Countermeasure for circulatory disturbance
Prevents crewmemeber from overloading during descent
Increases ortostatic tolerance during post-flight adaptation

Usage:
During descent, landing, and after landing

Donning:
Prior to entry into Soyuz

Suit Components:
Kentaver:
- shorts 1 ea.
- gaiters 1 pair
- short underpants (in plastic bag) 1 ea.

Kamelia-A underwear set (in plastic bag):
- jersey 1 ea.
- underpants 1 ea.
- socks 1 pair

Stowage bag 1 ea.

5.8.1. DONNING AND ADJUSTING KENTAVR SUIT

NOTE
To adjust Kentaver — there is lacing available on the outer side of the shorts and on the inner side of the gaiters. Crewmember's name and suit size are found on shorts Velcro belt flap, gaiters flaps and bag.

1. Unstow bag with Kentaver intended for a particular crewmember

2. Obtain from the bag: shorts, gaiters, and short underpants (in a plastic bag)
 Unstow short underpants from plastic bag and don

3. Obtain Kamelia-A underwear set (in plastic bag) from the stowage bag
 Unstow jersey from plastic bag and don

4. Undo all zippers on shorts, gaiters
5. Don shorts and pull them up (so that they would fit snugly around groin area)

6. Fasten zipper and Velcro belt flap

7. Don gaiters (lacing should be located on the calf's inner side)
 one with "Пр" label should be on the right calf
 one with "Л" label should be on the left calf

8. Fasten zippers

9. Ensure shorts and gaiters adjustment is uniform by acquiring a nominal position in Kazbek-Y seat liner for 15-20 min

10. Obtain Kamelia-A underpants and socks from the plastic bag and don them.

5.8.2. DOFFING KENTAVR SUIT

1. Doff socks and underpants from Kamelia-A set

2. Unfasten shorts Velcro belt flap and zipper
 Doff shorts

3. Doff gaiters by unfastening their zippers
 Doff jersey of Kamelia-A set and short underpants

4. Air all Kentaver components until dry (if necessary)

5. Fold and stow shorts, gaiters, short underpants in plastic bag as shown in Figure 5.30 p. 5-34

6. Stow Kamelia-A items into plastic bag

7. Stow all Kentavr items into stowage bag
Figure 5.28 Shorts and gaiters — Front and Back View

Shorts:
1 – shorts right side
2 – shorts left side
3 – front insert
4 – shorts middle part
5 – shorts thigh part
6 – Velcro belt flap
7 – zipper
8 – side panel
9 – lacing

Gaiters:
10 – main part
11 – side panel
12 – zipper
13 – zipper flap
Figure 5.29 Individual adjustment system
1 – main canvas
2 – loop strap
3 – lacing

Figure 5.30 Shorts, gaiters and short underpants folded view
1 – shorts
2 – gaiters
3 – short underpants
For notes

6. MEANS FOR MEDICAL MONITORING

6.1. GAMMA-1 SET

Purpose:
To read, amplify and convert physiological information with its subsequent transmission to recording devices (oscilloscope and telemetry communication systems):
- ECG in DS lead (ЭКГ-ДС)
- ECG in three standard leads (ЭКГ-1, ЭКГ-2, ЭКГ-3)
- ECG in three amplified leads (ЭКГ-aVR, ЭКГ-aVL, ЭКГ-aVF)
- ECG in six chest leads (ЭКГ-V1, ЭКГ-V2, ЭКГ-V3, ЭКГ-V4, ЭКГ-V5, ЭКГ-V6)
- ECG in three corrected orthogonal leads after Frank’s method (ЭКГ-X, ЭКГ-Y, ЭКГ-Z)
- Sphygmogram of femoral artery (СФГ-Б)
- Sphygmogram of radial artery (СФГ-Л)
- Sphygmogram of shin artery (СФГ-Г)
- Temporal pulsogram (ВПГ)
- Venous-arterial pulsogram (ВАП)
- Kinetocardiogram of right and left side of heart (ККГ-П, ККГ-Л)
- Tachooscillograms for determining BP after Savitskiy (АД-ТО) and Korotkov sounds (АД-ТК)
- Pressure marks in АД (ОД)/BP Cuff
- Rheograms after Kedrov’s method (РПГ Ro/ΔR p-p)
- Rheograms and differentiated rheograms in the bimastoidal lead (РПГ Ro/ΔRбм, РПГ dR/dtбм)
- Rheograms and differentiated rheograms from forearm, shin, lung, liver (РПГ Ro/ΔRпредпл, РПГ dR/dtпредпл, РПГ Ro/ΔRгол, РПГ dR/dtгол, РПГ Ro/ΔRпеч, РПГ dR/dtпеч, РПГ dR/dtпеч, РПГ dR/dtпеч)
- Rheoencephalograms and differentiated rheoencephalograms in the frontomastoidal leads on the right (РПГ Ro/ΔR ф.м прав, РПГ dR/dt ф.м. прав) and on the left (РПГ Ro/ΔR ф.м. лев, РПГ dR/dt ф.м. лев)

Features:
- Simultaneous signal recording on six channels
- Incremental gain control on all channels

Specifications:
- Continuous operation time: 8 hours
- Power source: ППС-24
- Power consumption: 21 W (when АД unit is Off)
 50 W (when АД unit is On)
 80 W (when АД unit compressor is On)

Location:
- GAMMA-1M SM Medical Locker
- РПГ kits and КОММУТАТОР РПГ SM Medical Locker containers 1, 2
Hardware Composition:

GAMMA-1M hardware (Figure 6.1 p. 6-2)

Коммутатор РПГ (РПГ switching unit)

Sensor units (Figure 6.2 p. 6-3):
- УСИ АД
- УСИ РЭГ-1
- УСИ ЭКГ
- УСИ ЭКГ-ОРТ
- УСИ ВАП-ККГ
- УСИ РПГ-1
- УСИ РПГ-2
- УСИ РПГ-3-01
- УСИ РПГ-4
- УСИ РПГ-5-01
- УСИ ВПГ

GAMMA-1 set (Figure 6.2 p. 6-3)

Set of User's Manuals (Figure 6.2 p. 6-3)
Figure 6.2 Gamma Accessories Kits
6.1.1. MEDICAL EXAM PANEL

Purpose:
Amplify and convert physiological information coming from the sensor units (УСИ) and Blood Pressure Panel, Rheoplethysmography Panel <Gamma-1>
Switch and route output signals
Simultaneously send output signals to three outputs: connectors РТС, МР, КПА (see Figure 6.4 p. 6-5)
Energize system
Manual switching each of six signals to the oscilloscope input
Incremental signal gain control

![Figure 6.3 Medical Exam Panel Front View](image)

Indicators and Controls:
- sw OPERATIONAL MODES:
 - OSC Transfers signals to oscilloscope and outputs with manual activation of Blood Pressure Panel via pb START (on Blood Pressure Panel)
 - TLM GAIN Transfers position code signals of sw GAIN to outputs
 - OPERATION Transfers signals to the outputs with Blood Pressure Panel automatic control (with preserved indication on oscilloscope)
sw PANEL PWR Power-up/power-down Medical Exam Panel (ПМО)
sw OSCILLOSCOPE Provides manual switching of each of six signals to oscilloscope input
sw GAIN I-VI Provides incremental adjustment of signal gain
LED PANEL PWR Power on indicator
LED TELEMETRY (TLM) Not used
pb ATTENUATION Manually sets the constant component of output signal
connector EKG HARNESS Connects sensors unit (УСИ) lead cable

Figure 6.4 Medical Exam Panel (Back View)
6.1.2. BLOOD PRESSURE PANEL

Purpose:
- Creates pressure rise/fall cycles in the cuff
- Converts cuff pressure values to electrical signal
- Amplifies and conditions PRESSURE WAVE FORM, KOROTKOV SOUND and PRESSURE MARK signals

Blood Pressure Panel Operating Modes:
- From installed pressure source/compressor (sw MODE → AUTO)
- From manual compressor pump (sw MODE → MANUAL)

Compressor Activation Modes:
- Manual activation: via pb START (sw OPERATIONAL MODES → OSC on MEDICAL EXAM PANEL)
- Automatic activation: first cycle begins after pb START is pressed, each BP measurement takes place 80±20 sec after completion of preceding measurement (sw OPERATIONAL MODES → OPERATION on MEDICAL EXAM PANEL)

Pressure increase rate in the cuff:
- sw OPERATIONAL MODE → PRESSURE WAVE FORM: 4 mmHg
- sw OPERATIONAL MODE → KOROTKOV SOUND: 24 mmHg

Pressure decrease rate in the cuff:
- sw OPERATIONAL MODE → PRESSURE WAVE FORM: 24 mmHg
- sw OPERATIONAL MODE → KOROTKOV SOUND: 4 mmHg

Indicators and Controls:
- LED (upper): unit activation indication
- LED (lower): manual mode indication
- pb START: to issue command to initiate one measurement cycle
- sw OPERATIONAL MODE: selects measuring method (PRESSURE WAVE FORM-KOROTKOV SOUND)
- sw MODE: switches operating mode (MANUAL-AUTO)
- sw mm Hg: switches measuring ranges (180-240)
- sw GAIN: incrementally regulates tachooscillogram signal amplitude
- socket CUFF: for cuff connection
socket INFLATE for manual pump connection
connector PRESSURE-SOUND for cuff sensors connection
socket LUBE MOTOR supplies lubricant to the compressor
socket LUBE COLLECTION catches excess lubricant

Figure 6.5 Blood Pressure Panel (Front View)
6.1.3. RHEOPLETHYSMOGRAPHY PANEL <GAMMA-1> WITH КОММУТАТОР РПГ (RHEOPLETHYSMOGRAPHY PANEL <GAMMA-1> SWITCHING UNIT)

Purpose of РПГ:
To convert the electrical resistance active component for the examined part of the body, and deriving base resistance signals and rheograms from it
To differentiate rheogram signal

Base resistance \((R_0) \): degree of blood flow in the examined part of body
Rheogram \((\Delta R) \): pulsed flow of blood through tissues
Differential rheogram \((dR/dt) \): rate of pulsed fluctuations in blood flow

Unit provides alternating output of base resistance and rheogram signals via one channel

Figure 6.6 Rheoplethysmography Panel <Gamma-1> (Front View)

Indicators and Controls:

- **LED** unit activation indication
- **sw GAIN I**
- **sw GAIN II** incrementally regulates signal amplification
- **pb RESET TO ZERO** outputs zero level for evaluating base resistance
- **connector INPUT 1 and connector INPUT 2** sensor unit cable connection
Purpose of КОММУТАТОР РПГ (РПГ Switching Unit):
To connect rheographic sensor units to the RHEOPLETHYSMOGRAPHY PANEL <GAMMA-1> unit inputs according to switching program (see Table 6.1 p. 6-10)

connector ВЫХОД (Output)

Figure 6.7 КОММУТАТОР РПГ (Front View)

cable 5A4.856.922

Figure 6.8 Rheoplethysmography Panel <Gamma-1> and КОММУТАТОР РПГ Connection Diagram

connector ВХОД I and connector ВХОД II - connection of sensor unit cable to КОММУТАТОР РПГ

Figure 6.9 КОММУТАТОР РПГ (Top View)
Table 6.1 Sensor unit connection to Rheoplethysmography Panel <Gamma-1> via КОММУТАТОР РПГ

<table>
<thead>
<tr>
<th>Program number</th>
<th>Position of КОММУТАТОР РПГ sw ПРОГРАММА</th>
<th>Sensor units connected to КОММУТАТОР РПГ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>ВЫКЛ (Off)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>ВЫКЛ (Off)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>ВЫКЛ (Off)</td>
</tr>
<tr>
<td>4</td>
<td>ВЫКЛ (Off)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ВЫКЛ (Off)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>ВЫКЛ (Off)</td>
<td>6</td>
</tr>
</tbody>
</table>

NOTE

The ВПГ sensor connector must be connected to the ВПГ connector on the ПКО ЭКГ-ККГ while working according to program 1, 3 (see Table 6.1)
6.1.4. OSCILLOSCOPE ОМЭЛ-4Б

Purpose:
Display of physiological signals for visual monitoring
(sw OPERATIONAL MODES → SWEEP)

![Oscilloscope Front Panel](image-url)

Controls:

- **BRIGHTNESS**: Brightness control
- **SWEEP VELOCITY**: Sweep rate control
- **sw OPERATIONAL MODES**: Selects type of operation
- **SCREWDRIVER**: Potentiometer adjustment screw
6.1.5. SENSOR UNITS (УСИ) AND ACCESSORIES KITS

Purpose of Sensor Unit - Obtain physiological information

ECG Sensor Unit (УСИ ЭКГ) Purpose - Obtains ECG in 3 standard, 3 amplified and 6 chest leads

![Image of ECG Sensor Unit](image1)

On the biomed harness:
- Sequentially numbered openings for securing electrodes
- Two pockets for standard lead electrodes marked as follows: ПРАВАЯ РУКА (Right Arm), ЛЕВАЯ РУКА и ПРАВАЯ НОГА (Left Arm and Right Leg), ЛЕВАЯ НОГА (Left Leg)
- Lead cable ends in a connector, built into a casing with a two-position switch

![Image of Biomed Harness and ECG Cables](image2)

ВАП-ККГ Sensor Unit (УСИ ВАП-ККГ) Purpose - Obtains ВАП, ККГ and ЭКГ-ДС

![Image of ВАП-ККГ Sensor Unit](image3)

On the biomed harness:
- ECG electrodes: Д, S, 0, leads for ККГ sensor, pocket for ВПГ, ВАП, ККГ connectors
ВПГ Sensor Unit (УСИ ВПГ) Purpose - Obtain and initially convert temporal artery pulse fluctuations to electric signal

РПГ-1 Sensor Unit (УСИ РПГ-1) Purpose - Obtain rheograms from torso

Figure 6.13 ВПГ Sensor Unit

Figure 6.14 РПГ-1 Sensor unit
РПГ-2 Sensor Unit (УСИ РПГ-2) Purpose - Obtain rheograms from calf

РПГ-2 electrode ГОЛЕНЬ НИЖНИЙ (CALF LOWER)

РПГ-2 electrode ГОЛЕНЬ ВЕРХНИЙ (CALF UPPER)

РПГ-2 lead cable

УСИ РПГ-2 bag

Figure 6.15 УСИ РПГ-2

РПГ-3-01 Purpose - Obtain rheograms from liver

Biomed Harness with РПГ-3-01 lead cable

УСИ РПГ-3-01 bag

РПГ-3-01 electrodes

Figure 6.16 УСИ РПГ-3-01

Figure 6.17 РПГ-3-01 Biomed Harness (View of Electrodes)
РПГ-4 Sensor Unit (УСИ РПГ-4) Purpose - Obtain rheograms from lung

РПГ-4 electrodes

Figure 6.18 УСИ РПГ-4

РПГ-5-01 Sensor Unit (УСИ РПГ-5-01) Purpose - Obtain rheograms from forearm

РПГ-5-01 electrode ПРЕДПЛЕЧЬЕ ВЕРХНИЙ (FOREARM UPPER)

РПГ-5-01 electrode ПРЕДПЛЕЧЬЕ НИЖНИЙ (FOREARM LOWER)

Figure 6.20 УСИ РПГ-5-01
РЭГ-1 Sensor Unit (УСИ РЭГ-1) Purpose:
Obtain crewmember's rheoencephalograms in the bimastoidal lead and frontomastoidal leads on the right and left.
When working without КОММУТАТОР РПГ - obtain rheoencephalograms in the frontomastoidal leads.

BP Sensor Unit (УСИ АД) Purpose - Obtain and perform initial conversion of TO and TK signals.

Figure 6.21 УСИ РЭГ-1

Figure 6.22 УСИ АД
Purpose - Obtain ECG in orthogonal leads per indications

On the biomed harness:
Sequently numbered openings for securing electrodes A, C, E, M, Y
Two pockets for electrodes marked as follows: ПРАВАЯ НОГА (Right Leg), ЛЕВАЯ НОГА и ШЕЯ (Left Leg and Neck)
Figure 6.24 Gamma-1 Set

GAMMA-1 Set Components:

- **Pump** for manual operating mode in the event of blood pressure panel compressor failure (attached to INFLATE socket)

- **Conductive fluid** tube for water (fill using Kolos system)

- **Adapter** for moistening ECG and ШКО-РЭГ-1 electrodes

- **Lube collector and feeders set** for lubricating blood pressure panel compressor blades

Set of Manuals:

Information about Subject’s outfitting and waveforms of recorded signals
6.1.6. INDIVIDUAL ADJUSTMENT OF УСИ BIOMED HARNESS

1. Adjust the length of shoulder and belt straps:
 Insert the hooks in the holes so that they are symmetrical to the spine line

 ![Sensor unit (УСИ) Biomed Harness (Back View)](image)

 NOTE

 When adjusting the length of the harness straps, the distance between the hook and clasp buckle should be 40-60 mm when unfastened.

 2. Mark the holes into which the hooks are inserted using the color-coded (red or green) staples

6.1.7. REFILLING CONDUCTIVE FLUID FROM KOLOS SYSTEM

1. Unscrew cap of the tube with conductive fluid
2. Expel air from the tube by squeezing it and screw cap back on
3. KOLOS socket (with potable water) →tube with conductive fluid lower opening
4. Supply water (do not fill completely - without creating excessive pressure)
5. KOLOS socket ←tube with conductive fluid lower opening
6.1.8. WETTING ELECTRODES

1. Remove lid from adapter

2. Untighten screw of tube with conductive fluid at 1-2 turns until it stops (to allow water from tube flow into adapter)

3. Supply water into adapter by gently squeezing the tube (traces of water should be seen on sponge)

4. Tighten screw of tube with conductive fluid

5. Press moistened sponge to electrode contact pad (do not allow water between electrode and sponge)

6. Ensure the electrode contact pad is wet

7. Cap adapter

6.1.9. LUBRICATING BLOOD PRESSURE PANEL COMPRESSOR BLADES

(after one year of blood pressure panel operation)

1. Unscrew nuts from LUBE MOTOR and LUBE COLLECTION sockets on blood pressure front panel

2. Unstow lube collector and lube feeder set from Gamma-1 set
 Detach one lube feeder from the lube feeder set

3. Screw lube collector onto LUBE COLLECTION socket

4. Power up blood pressure panel:
 connector ПКО ЭКГ-ККГ —→ΕΚГ HARRNESS connector on Medical Exam Panel
 ΓAMMA MED SYS on ППС-24
 PANEL PWR on MEDICAL EXAM PANEL
 LED on BLOOD PRESSURE PANEL unit

5. Insert flat tip of lube feeder into LUBE MOTOR socket opening, and by compressing the lube feeder, pierce it with needle, located inside socket

6. Squeeze some lubricating lube out of lube feeder

7. After 20 sec power down blood pressure panel (in the reverse order)

8. Discard used lube feeder

9. Unscrew lube collector and stow it in GAMMA-1 set

10. Tighten nuts back on LUBE MOTOR and LUBE COLLECTION sockets
6.1.10. GAMMA-1M TROUBLE SHOOTING

CAUTION

If any parameter deviations were noticed, √MCC

<table>
<thead>
<tr>
<th></th>
<th>Symptom</th>
<th>Probable Cause</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
</table>
| 1 | Absense or waveform incompatibility of signal from one of six parameters as displayed on Oscilloscope | Poor sensor pad contact, insufficient moistening of electrodes, sensor failure | √ correct placement of sensor or electrode
Moisten electrode pads
¶ pb ATTENUATION (on MEDICAL EXAM PANEL)
No signal: Replace biomed harness (ПКО)
No signal: √MCC |
| 2 | After pressing pb START on blood pressure panel, cuff pressure does not change | Compressor pump failure, protective circuit failure | Go to manual mode of operation:
sw MODE on BLOOD PRESSURE PANEL → MANUAL
Pump →+ INFLATE fitting
Pressurize until √ LED MANUAL
¶ pb START |
| 3 | Pressurization rate in CUFF in PRESSURE WAVE FORM mode is changing | Choke СКОРОСТЬ КОМПРЕССИИ (pressurization rate) adjustment was disrupted | Remove blood pressure panel from medical locker
Remove seal from choke СКОРОСТЬ КОМПРЕССИИ (on the left wall)
Adjust choke to required pressurization rate (decrease pressurization rate — when screwing choke in, increase — when screwing choke out) |
| 4 | Depressurization rate in CUFF in KOROTKOV SOUND mode is changing | Choke СКОРОСТЬ ДЕКОМПРЕССИИ (depressurization rate) adjustment was disrupted | Remove blood pressure panel from medical locker
Remove seal from choke СКОРОСТЬ ДЕКОМПРЕССИИ (on the left wall)
Adjust choke to required depressurization rate (decrease depressurization rate — when screwing choke in, increase — when screwing choke out) |
6.2. MASS MEASUREMENT DEVICE (ИМ)

Purpose:
To measure body mass and small mass in a microgravity, and to display the data on digital readout.

Principle of Operation:
Measurement of system's free oscillations attenuation rate.

Specifications:

Mass measurement range:
- Body mass measurement mode 50.00 – 99.99 (± 0.25) kg
- Small mass measurement mode within sub-ranges 0.02 – 0.2 (± 0.02) kg
 - 0.2 – 2.0 (± 0.04) kg

Power consumption:
- Power consumption from onboard power source no more than 50 W
- ИМ stand movable part mass 7.0 kg
- Number of oscillations till complete stop not less than 30
- Electromagnetic attraction force applied to ИМ stand not less than 150 N
- Build-up time 5 min
- Continuous operating time 8 hours

Hardware Components:
- ИМ Stand (Figure 6.26 p. 6-23)
- ИММ Kit (Figure 6.27 p. 6-23)
- Matching Unit (УС) (Figure 6.28 p. 6-24)
- MASS MEASUREMENT PANEL (УСВ) (Figure 6.28 p. 6-24)
- Cable kit (Figure 6.29 p. 6-24)
 - cable 5А4.856.237 (pocket 'КАБЕЛЬ №1')
 - cable 5А4.856.238 (pocket 'КАБЕЛЬ №4')
 - cable 5А4.856.253 (pocket 'КАБЕЛЬ №3')
 - cable 5А4.856.254 (pocket 'КАБЕЛЬ №2')
- Platform (Figure 6.30 p. 6-24)
- Cover (Figure 6.31 p. 6-25)

Location:
- ИМ Stand, ИММ Kit, cable kit, platform In panel 115 area
- MASS MEASUREMENT PANEL (УСВ) On panel 120
- Matching Unit (УС) Under panel 121
Figure 6.26 ИМ Stand

Figure 6.27 ИММ Kit
Figure 6.28 Matching Unit (YC) and Mass Measurement Panel (YCB)

Figure 6.29 Kit with Cables

Figure 6.30 Platform (Bottom View)
Figure 6.31 Mass Measurement Device in Stowed Configuration

Figure 6.32 Mass Measurement Device (ИМ) in Body Mass Measurement (ИМТ) Configuration
6.2.1. INTEGRATED INERTIAL CONVERTER UNIT (ПКИ) INITIAL SETUP

CAUTION

Do not allow any inertial mass impact with the unit to prevent the damage to its precision mechanism.

1. **Unstow ПКИ**

![Figure 6.33 ПКИ ИМ with installed transport cover](image)

2. **Remove screws pos. 1-3 (by performing alternate half-turns) (Figure 6.34 p. 6-26) on ПКИ transport cover**

3. **Remove screws pos. 4-6 (by performing alternate half-turns) (Figure 6.34 p. 6-26) on ПКИ transport cover**

![Figure 6.34 ПКИ transport cover screws location](image)

4. **Remove transport cover from ПКИ (see Figure 6.35 p. 6-27)**

5. **Discard transport cover and screws**

6. **Stow ПКИ**
Figure 6.35 ПКИ with removed transport cover

Figure 6.36 Mass Measurement Device (ИМ) in Small Mass Measurement (ИММ) Configuration
Figure 6.37 Matching Unit (УС) Front Panel

Figure 6.38 Mass Measurement Panel (УСВ) Front Panel
Figure 6.39 Mass Measurement Device (ИМ) Electrical Connection Diagram

Figure 6.40 ИМ Stand in Working Configuration (movable part is secured in neutral position)
6.2.2. IM CONFIGURATION FOR SMALL MASS MEASUREMENT (IMM) MODE

1. Remove platform from IM stand:
 - Loosen platform locking screw
 - Remove platform
 - Temp stow platform

2. Unstow IM stand and PKI
 Install IM stand into working configuration (Figure 6.40 p.6-29)

3. Remove cover from IM stand
 Temp stow cover

4. Unsecure latches of two locking screws with latches on IM stand (see Figure 6.26 p. 6-23, Figure 6.32 p. 6-25)
 Remove locking screws with latches (two)

5. Determine number of oscillations till the complete stop:
 - Depress handle triggers
 - Bring instrument movable part toward its base to the stop and then quickly let it go
 - Count number of oscillation cycles till the complete stop
 - If <30, clean the inner tube guides with wipe from IMM Kit

 ** ***
 ** If number of oscillations <30:
 ** Repeat Step 5
 ** If number of oscillations still <30
 ** see Sect.6.2.5 Step 2 p. 6-36)
 ** ***

6. Set the movable part of IM stand in neutral position (see Figure 6.40 p. 6-29)
 - Trigger releases of locking handle (left)
 - Tighten two locking screws with latches (see Figure 6.26 p. 6-23, Figure 6.32 p. 6-25)
 - Engage latches of locking screws with latches (two) on IM stand

7. Install PKI onto IM stand:
 - Loosen PKI lever clamp
 - Put PKI on movable tube of IM stand
 - Secure PKI on IM stand, by turning the lever clamp

8. Unstow cable from kit with cables
 Configure circuit per Figure 6.39 p. 6-29
 - Cable 5A4.856.254 does not preclude free movement of IM stand movable part
10. cnctr X2 of cable 5A4.856.237 — РБС 10/3 power outlet
 РБС 10/3

11. □ PWR LED (Figure 6.38 p. 6-28)
 □ 0000

 * **

If PWR LED or MASS MEASUREMENT PANEL
readout perform Sect.6.2.5 Step 1 p. 6-36
If □ two-digit number on MASS MEASUREMENT
PANEL readout perform Sect.6.2.5 Step 3
p. 6-36

 * **

12. Disengage latches of two locking screws with latches on ИМ stand
 (see Figure 6.26 p. 6-23, Figure 6.32 p. 6-25)
 Loosen two locking screws with latches

13. Pause for 5 min

6.2.3. SMALL MASS MEASUREMENT

6.2.3.1. DEVICE CALIBRATION AND CALIBRATION CHECK

 NOTE

1. Calibration is performed every time when switched from one measurement sub-
 range to another
2. Calibration is performed during prolonged operations (over 30 min) in the same
 measurement sub-range

CALIBRATION

1. □ CALIBRATION
 □ 0.2-2.0
 □ NET WT

2. ↓ trigger of ИМ stand locking handle (left)
 ↓ trigger releases of start handle (right)
 Bring instrument movable part toward its base to the stop

3. ↓ trigger of start handle (right)
 ■ MASS MEASUREMENT PANEL readout
 movable part oscillations (after 3 sec)

4. □ calibration coefficient value

5. Repeat steps 2-4 three more times
6. \(\downarrow pb \) m \(\square LED \) m (Figure 6.38 p. 6-28)
- average value of calibration coefficient

7. \(\diamond \) OPERATION

8. Set the movable part of IM stand in neutral position
- trigger releases of locking handle (left)

CALIBRATION CHECK

9. Unstow reference weight from IMM Kit
 - Place reference weight on ПКИ platform
 - Secure reference weight via Velcro

10. \(\downarrow \) trigger of IM stand locking handle (left)
 - \(\downarrow \) trigger releases of start handle (right)
 - Bring instrument movable part toward its base to the stop

11. IM stand
 - \(\downarrow \) trigger of start handle (right)
 - MASS MEASUREMENT PANEL readout
 - \(\prec \) movable part oscillations (after 3 sec)

12. YCB readout
 - \(\square \) value of reference weight mass

13. Repeat steps 10-12 two more times

14. YCB unit
 - \(\downarrow pb \) m
 - \(\square LED \) m (Figure 6.38 p. 6-28)
 - \(\square \) average value of reference weight mass

15. \(\prec \) difference between average value of reference weight mass and actual reference weight mass value stays within ± 0.005 kg
 - If values are different for more than ± 0.005 kg, repeat calibration sequence and calibration check

16. Set the movable part of IM stand in neutral position
 - \(\downarrow \) trigger releases of locking handle (left)

17. Remove reference weight from ПКИ platform
 - Stow reference weight into IMM kit

6.2.3.2. SMALL MASS MEASUREMENT

1. \(\sqrt[12]{IM} \) stand movable part is secured in neutral position
 - Place item to be weighed on ПКИ platform
 - Secure item with Velcro
2. ↓ trigger of IM stand locking handle (left)
 ↓ trigger releases of start handle (right)
 Bring instrument movable part toward its base to the stop

ИМ stand
УСВ unit
ИМ stand

3. ↓ trigger of start handle (right)
 ■ MASS MEASUREMENT PANEL readout
 < movable part oscillations (after 3 sec)

УСВ readout
УСВ unit
УСВ readout

4. □ item mass

5. Repeat steps 2-4 three more times

УСВ unit
УСВ readout

6. ↓ pb m
 □ LED m (Figure 6.38 p. 6-28)
 □ average value of item mass

7. Record data in the log sheet (see pp. 6-37, 6-38)

8. Set the movable part of IM stand in neutral position
 ↓ trigger releases of locking handle (left)
 Remove weighed item from ПКИ platform

6.2.3.3. SMALL MASS (UP TO 0.2 KG) MEASUREMENT

УСВ unit

1. ♠ CALIBRATION
 ♠ 0.2-2.0
 ♠ NET WT

2. Perform calibration and calibration check per Sect. 6.2.3.1
 steps 2-15 pp. 6-31 - 6-32

3. Perform required item mass measurement per Sect. 6.2.3.2
 steps 1-6 pp. 6-32 - 6-33

4. Record data in the log sheet (see pp. 6-37, 6-38)

5. Set the movable part of IM stand in neutral position
 ↓ trigger releases of locking handle (left)
 Remove weighed item from ПКИ platform
6.2.3.4. SMALL MASS MEASUREMENT USING ADDITIONAL PACKING (CONTAINER)

1.
 \(\# \) CALIBRATION
 \(\# \) 0.2-2.0
 \(\# \) NET WT

2. Perform calibration and calibration check per Sect. 6.2.3.1 steps 2-15 pp. 6-31 - 6-32

3. \(\sqrt{\text{IM}} \) stand movable part is secured in neutral position
 Place container on ПКИ platform
 Secure container with Velcro

4. \(\# \) CALIBRATION
 \(\# \) NET WT
 Perform container mass measurement per Sect. 6.2.3.2 steps 2-6 p. 6-33

5. Set IM stand movable part in neutral position
 \(\downarrow \) trigger releases of locking handle (left)
 Place item to be weighed into container

6. \(\# \) OPERATION
 Perform mass measurement per Sect. 6.2.3.2 steps 2-6 p. 6-33

7. Record data in the log sheet (see pp. 6-37, 6-38)

8. Set IM stand movable part in neutral position
 \(\downarrow \) trigger releases of locking handle (left)
 Remove weighed item and container from ПКИ platform
6.2.4. CLOSEOUT OPERATIONS AFTER COMPLETION OF SMALL MASS MEASUREMENT

1. ☐ РБС 10/3
 - LED POWER (Figure 6.38 p. 6-28)
 - connector X2 of cable 5A4.856.237 ←→ РБС 10/3 power outlet
 - Disconnect cables per Figure 6.39 p. 6-29
 - Stow cables in cable kit

2. ✔ ИМ stand movable part is secured in neutral position
 - Tighten two locking screws with latches
 - Engage latches of two locking screws with latches on ИМ stand

3. Remove ПКИ from ИМ stand:
 - Rotate ПКИ lever clamp ☐
 - Remove ПКИ from movable metal tube of ИМ stand
 - Stow ПКИ

4. Put cover on ИМ stand (labeling on the right)

5. Stow ИМ stand
 - Stow platform onto ИМ stand and secure by tightening locking screw
6.2.5. TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When connecting X2 cnctr to РБС power outlet MASS MEASUREMENT PANEL readout and LED PWR</td>
<td>Check good connector contact in ИМ stand, MASS MEASUREMENT PANEL, matching unit and РБС power outlet Check □ or green LED on РБС power outlet If green LED replace fuse of РБС power outlet If all connections are found OK, replace fuses (spare fuses can be found inside inner pockets of ИММ kit)</td>
</tr>
<tr>
<td>2. Number of ИМ stand movable part free oscillations < 30</td>
<td>Wipe ИМ stand guides using a dry napkin from ИММ kit Measure number of free oscillations (see Sect. 6.2.2 Step on 5 p. 6-30) If the number of free oscillations is < 30: Stop measurements √MCC</td>
</tr>
<tr>
<td>3. Two-digit on MASS MEASUREMENT PANEL readout is lit (e.g. 01, 02 or 03)</td>
<td>Deenergize hardware Activate hardware Perform calibration, calibration check and measurements per this procedure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Item</th>
<th>Measured Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Item</td>
<td>Measured Mass</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.3. SPHYGMOMANOMETER TENSOPLUS

Purpose:
To measure BP (blood pressure) and PR (pulse rate)

Hardware Components:
- TENSOPLUS OSZ-2 instrument;
- cuff;
- batteries set;
- case

Range of measurement:
- systolic pressure - 50-280 mm Hg
- diastolic pressure - 40-160 mm Hg
- Pulse rate measurement range: 35-160 bpm

Power source:
- 6 V, LR6 or R6 type batteries (4 ea.)

Location – medical locker, container 2

Principle of operation is based on the method of tensometric measurement of blood pressure during brachial artery decompression using pneumocuff and built-in sphygmomanometer pump

Provided compression thresholds - 190, 220, 250, 270, 300 mmHg, chosen automatically depending on specific value of measured systolic pressure

1 – TENSOPLUS OSZ-2 instrument,
2 – air connector,
3 – cuff,
4 – rubber hose,
5 – case

Figure 6.41 Sphygmomanometer (General View)
Information display:

1 - controller VENTIL
2 - light display
3 - switch OFF-ON
4 - button MEMORY
5 - button START

Start – Start of BP and pulse measurement
Deflation – pressure equalization mode
Measuring – BP and pulse measurement mode
Err – Measurement Error – measurement error
bat – Replace battery – replace battery

Figure 6.42 TENSPLUS OSZ - 2 Front panel
Controls and Indicators:

Switch OFF-ON powers the instrument on and off

Button START activates BP and PR measurement mode

Light display displays instrument operating mode information, systolic and diastolic pressure measurement data (mmHg), and pulse (bpm)

Button MEMORY displays up to 7 most recent measured BP values, stored in memory buffer

VENTIL Control adjusts decompression rate

Pressure inlet МАНЖЕТА (Cuff) to mate with cuff pneumoconnector

Connector ПИТАНИЕ (Power) supplies instrument with 6V power from external DC power source (located on the instrument back wall, not used in flight)
6.3.1. BATTERY REPLACEMENT

INSTALL (if required) battery set into battery compartment

1. Remove sphygmomanometer from the case and open battery compartment lid

2. Remove battery set from case and packet and install it into battery compartment following polarity marks

3. Close battery compartment lid

Figure 6.43 TENSOPPLUS OSZ – 2 — Base

1 – battery compartment
2 – lid
6.4. COMPLEX CENTER

Purpose:
Power supply for devices intended for performing full-scale medical and biological experiments
Galvanic isolation of two external analog signals, in the range from 0 to + 6 V and their output to telemetry systems
Measurement and digital indication of interelectrode resistance and DC voltage
Sequential display of signals from peripheral devices on the oscilloscope screen

Hardware Components:
Oscilloscope ОМЭЛ-4Б
Power supply unit (БП)
(Center) Connector Check (БКК)
МЭК-2 set

Location:
SM medical locker

Specifications:
Power consumption by the complex components, not more than:
- power supply unit 135 W (max)
- (Center) Connector Check (БКК) 7 W
- oscilloscope 7 W
Time for transition into operating mode for the complex components should not exceed 5 min
Electrical power for complex CENTER is supplied from ППС-24

Figure 6.44 Complex Center
CENTER POWER UNIT provides:

- Power supply of peripheral devices via connectors OUTPUT I, OUTPUT II, OUTPUT III (parameters of output voltages are given in Table 6.2 p. 6-45)
- Power supply of peripheral devices via connector \(\text{ВЫХОД ТР} \) (transformer output) at 27 V, supplied to the connector from feed circuit without intermediate conversions via 5 A fuse
- Transfer of feed circuit voltages (27 V) to CENTER CONNECTOR CHECK via connector PANEL PWR
- Transfer of output voltages (5, 15, minus 15 V and 5…20 V) to CENTER CONNECTOR CHECK digital volt-ohmmeter input via connector CHECK

Continuous operation time of the unit – 8 hours

In the event of short circuit of any unit output (except \(\text{ВЫХОД ТР} \)) or boost of load current to 1.5 and 4 A, respectively, circuit protection device is triggered, thus limiting the given channel output current, and corresponding LED OVERLOAD lights up

Figure 6.45 Front panel of CENTER POWER UNIT
CENTER POWER UNIT Controls:

Front Panel

- **sw CHECK V**
 - For consecutive control of output voltages on digital volt-ohmmeter
- **sw VOLTAGE V**
 - For discrete set of voltages 5…20 V
- **sw PANEL PWR**
 - For unit activation
- **sw TRANSFORMER POWER**
 - For transit circuit activation
- **LED PANEL PWR**
 - For indication of unit activation
- **LED OVERLOAD**
 - For indication of output voltages overload
- **cnctr OUTPUT I**
 - Connector with voltage of 5 and 15 V
- **cnctr OUTPUT II**
 - Connector with voltage of -15 V
- **cnctr OUTPUT III**
 - Connector with voltage of 5…20 V
- **cnctr ВЫХОД ТР (Transformer Output)**
 - Connector with voltage (27 +7 -4)

Rear Panel

- **Drawing fan**
 - For forced cooling
- **Fan Connector**
 - For fan connection
- **Fuse 6.3 A (Power Unit)**
 - In primary power supply circuit of the unit
- **Fuse 6.3 A (Transformer Power)**
 - In transit power supply circuit of the unit
- **cnctr 27 V PWR**
 - For connection of primary power supply circuit of the unit
- **cnctr PANEL PWR**
 - For connection to БКК power supply unit
- **cnctr CHECK**
 - For transfer of unit voltages for measurement and indication

Table 6.2 CENTER POWER UNIT Output Signals Matrix

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Output Voltage (Volts)</th>
<th>Load current, A</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nomin.</td>
<td>Min.</td>
<td></td>
</tr>
<tr>
<td>OUTPUT I</td>
<td>15.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>OUTPUT II</td>
<td>5.0</td>
<td>3.5</td>
<td>0.1</td>
</tr>
<tr>
<td>OUTPUT III</td>
<td>-15.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>OUTPUT III</td>
<td>+5…+20</td>
<td>1.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>
CENTER CONNECTOR CHECK provides:

- Measurement and digital indication of DC voltage in the range from 0.5 to 20 V
- Measurement of resistance in the range from 2 to 50 kΩ
- Two-channel galvanic isolation of two external analog signals, supplied on telemetry connector on the unit front panel and their simultaneous output to telemetry systems
- Switching of outgoing signals from peripheral devices, outgoing signals from complex GAMMA-1M, switching of interelectrode resistor circuits (МЭС) and БП output voltage to oscilloscope and voltmeter inputs depending on the operating mode, set with controls, located on the CENTER CONNECTOR CHECK front panel

Figure 6.46 CENTER CONNECTOR CHECK Front Panel

CENTER CONNECTOR CHECK Controls:

- **sw МЭС**: For switching of МЭС circuits from EKG HARNESS connector to the voltmeter input
- **sw CHECK**: For switching of БП output voltage to voltmeter input in the POWER UNIT position and input signals to the oscilloscope input in positions 2-11
- **sw V and k Ω**: For selection of volt-ohmmeter operating mode
- **Connector EKG HARNESS**: For switching of measured resistance circuits to the volt-ohmmeter input
- **Connector TELEMETRY**: For two-channel galvanic isolation of two external analog signals, supplied on telemetry connector
- **Connector INPUT**: For signal switching to oscilloscope output connector
OSCILLOSCOPE ОМЭЛ-4Б provides: Sequential display of signals transmitted to complex CENTER

![Figure 6.47 ОМЭЛ-4Б Front Panel](image)

OSCILLOSCOPE Controls:

- **BRIGHTNESS**
 Brightness control
- **SWEEP VELOCITY**
 Sweep rate control
- **sw OPERATIONAL MODES**
 Selects type of operation
- **Screwdriver**
 Used to adjust potentiometers

Set МЭК-2 is intended for:

Joint operation of CENTER and peripheral devices, it represents a kit with cables, also containing kit МЭК-1 (with microphone, holder, tube, sheeting, spare parts)
6.4.1. TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Probable Cause</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When power supply is on □ LED PANEL PWR</td>
<td>БП fuse 6.3 A has burnt out</td>
<td>Replace fuse</td>
</tr>
<tr>
<td>2. When sw TRANSFORMER POWER is on there is no voltage on connector ВЫХОД ТР (Transformer Output)</td>
<td>БП fuse 6.3 A has burnt out</td>
<td>Replace fuse</td>
</tr>
</tbody>
</table>
6.5. REFLOTRON-4 ANALYZER

Purpose:
To conduct biochemical analysis of whole blood using the method of dry reagents

Required Hardware:

Analyzer
1. Analyzer Reflotron-4

Reflotron-4
2. Analyzer Reflotron-4 Accessories Kit:
 - Perforator Autoclix
 - Power cord
 - Pipette 32 µl
 - Cover

Reflotron-4 Kit:
1. Tips (in package)
2. Lancets
3. Platforms
4. Microvetttes EDTA (red)
5. Microvetttes LH (orange)
6. Bactericidal tissues
7. Bactericidal band-aid
8. Tissues (for measurement chamber cleaning)
9. Containers with microcapillaries
10. Waste disposal bag
11. Cover

Set of measuring strips (in plastic containers)
1. C H E K - reference strip (for calibration purposes)
2. G L U - glucose strip
3. H B - hemoglobin strip
4. C H O L - cholesterol strip
5. T G - triglyceride strip
6. U R E A - urea strip
7. G G T - G-glutamiltransferase strip
8. U A - uric acid strip
9. G O T - aspartate-aminotransferase strip
10. G P T - alanin-aminotransferase strip
11. B I L - bilirubin strip
13. C R E A - creatinine strip
14. C K - creatinkynase strip
15. P-AM - pancreatic amylase strip
16. HDLP - high-density cholesterol strip
17. Cover

Characteristics

Power Consumption: 40 W

Location:
Reflotron-4
Set of measuring strips

In the bag, on pnl 336
Medical Locker, container 7
Figure 6.48 Reflotron-4 Front Panel (General View)

Figure 6.49 Reflotron-4 with measuring chamber casing removed (General View)
Figure 6.50 Reflotron-4 (Rear General View)

Figure 6.51 Reflotron-4 kit consumables, measuring strips set, pipette
6.6. MINICENTRIFUGE M-1100

Purpose:
Measurement of relative content of formed elements in human blood (hematocrit number) by means of mechanical separation of blood formed elements and plasma through centrifugation of blood in microcapillary tubes

Centrifugation is performed in automatic mode. Centrifugation time - 3 min 20 sec

Even number of microcapillary tubes, located one across each other and in a symmetrical order, are processed simultaneously

Required Hardware:
Kit M-1100:
- minicentrifuge M-1100 (МЦФ)
- Magnifier
- Forceps
- Brush
- Case

Set of power batteries (6 battery pack)

Minicentrifuge Power Source:
- Autonomous (6 elements of 343 or R14 type)
- One set of power batteries provides a minimum of 25 cycles of centrifugation

Location – In the bag on pnl 336
Figure 6.52 Minicentrifuge M-1100

- Rotor
- Strap
- Micro tube liner
- LED
- Cover lock

Power switch ПИТ (ВКЛ (On) - red, ОТКЛ (Off) - green)

Figure 6.53 Minicentrifuge M-1100 (Front View)
Figure 6.54 Minicentrifuge M-1100 (Bottom View)

Figure 6.55 Power unit
6.7. ECG RECORDER 90205

Purpose:
Recording of dynamic electrocardiograms (ДЭКГ), obtained from two leads within 24 hours

Hardware Components:
ECG Recorder 90205 kit (ECG Recorder in a pouch, belt and patient's cable)
Kit with ECG Recorder 90205 accessories (electrodes, tissue, razor, tape cassette and battery)

Location – Medical locker, container 5

Figure 6.56 ECG RECORDER 90205 Kit

Controls and Displays: (Figure 6.57, Figure 6.58 p. 6-56)

pb S and pb A - for time correction

Display - for current time

pb EVENT - for event mark

Closing ECG Recorder cover starts tape drive mechanism motor
Opening ECG Recorder cover stops tape drive mechanism motor
6.7.1. TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable cause</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No time reading on a display after a battery installation</td>
<td>1. Battery polarity is wrong</td>
<td>Install a battery observing the right polarity</td>
</tr>
<tr>
<td></td>
<td>2. Voltage < 8 V</td>
<td>Replace a battery</td>
</tr>
<tr>
<td>2. Motor of the tape drive mechanism is not activated when cover is closed</td>
<td>Cover is not closed firmly</td>
<td>Close cover until it clicks</td>
</tr>
</tbody>
</table>
6.8. URILUX UNIT

Purpose:
Urine biochemical test
Test is conducted on the first morning void, obtained before meals

Hardware Components:
URILUX unit (with pwr cable labeled УРОЛЮКС-БК)
Urilux kit:
- canister with control strips labeled Control -Test M
- paper for built-in printer
- cartridge for built-in printer
- Kit УБИМ-10У

Characteristics:
Power supply from Center Power Unit 9 V

Location – in a bag on pnl 336

Figure 6.59 URILUX Unit
6.8.1. PAPER AND CARTRIDGE INSTALLATION

1. Open printer cover
 Install cartridge with ink ribbon (if necessary)
 ↓ label PUSH on cartridge
 Install a roll of paper into paper holder

2. Insert tip of paper roll into a groove on the printer

3. ↓ pb START
 ▲ all upper panel LEDs light up sequentially

4. After the printer reels off app. 5-7 cm of paper:
 ↓ pb START (to stop the printer feeder motor)
 Pass paper through the slot on the printer cover and CI cover firmly

5. When replacing cartridge for a new one:
 ↓ down the right corner of cartridge (marked PUSH)
 Take the cartridge out from its support
 Discard the used cartridge
 Insert the new cartridge
7. PLASMA – 03 COMPLEX

PLASMA – 03 Components:

KRIOGEM-03 refrigerator

PLASMA-03 centrifuge components:
 PLASMA-03 centrifuge
 Canister
 Vial counterweight
 Syringe counterweight

Container KB-03:
 Cold accumulator AX-03
 Container housing
 Container cover
 Cloth cover

PLASMA-03 accessories kit:
 Elastic bungee
 Clamp
 Fuse (5 A)
 Cover

PLASMA-03 consumable set:
 SARSTEDT syringe, 9 ml, with gel
 BUTTERFLY type canule with adapter
 Bactericidal tissue
 Bactericidal band-aid
 Waste bag
 Ziplock bag

Location:

Container KB-03 (TBD)
PLASMA-03 accessories kit Medical locker, container 5
PLASMA-03 consumables set
PLASMA-03 centrifuge Pnl 226
KRIOGEM-03 refrigerator Between pns 234 and 235
Figure 7.1 PLASMA-03 accessories kit

- Bactericidal tissue
- BUTTERFLY canule
- Bactericidal band-aid
- Syringe SARSTEDT, 9ml
- Waste bag

Figure 7.2 PLASMA-03 Consumables Set
7.1. KRIOGEM-03 REFRIGERATOR

Purpose:
Stowage and freezing of blood and saliva samples or use as an incubator

KRIOGEM-03 Refrigerator Temperature Modes:
KRIOGEM-03 refrigerator provides the following temperature modes:
+37±0.5 °C, +29±1 °C, +20±1 °C, +8±1 °C, +4±1 °C, -22±2 °C

Characteristics:
Power consumption: 50 W
110 W (when starting the mode -22°C)
7.1.1. KRIOGEM-03 SETUP

1. Unstow KRIOGEM-03 refrigerator

2. Locate coiled ends of refrigerator power cable 17KC.10Ю 8210A-7830 and telemetry cable 17KC.42Ю 8242A-3050 behind pnl 234

3. Install refrigerator between panels 234 and 235 (clear zone around refrigerator should be not less than 150 mm)

4. Secure refrigerator with Velcro fasteners (located on back wall along refrigerator angles)

5. √ @ 0
 √ @ KRIOGEM FREEZER

6. Remove protective caps from connectors XP1 and XP2

7. cnctr XP1 of cbl 17KC.10Ю 8210A-7830→|←cnctr XP1
cnctr XP2 of cbl 17KC.42Ю 8242A-3050→|←cnctr XP2

8. Find free end of grounding strap on bulkhead behind panels 234 and 235
9. Free end of grounding strap \rightarrow grounding strap terminal on KRIOGEM-03 upper cover

7.1.2. KRIOGEM-03 ACTIVATION IN MODE -22°C

NOTE

1. When KRIOGEM-03 is in mode -22°C then it should be activated:
 - 20 hours prior to the experiment if two cold accumulators are installed in it
 - 4 hours prior to the experiment if cold accumulators are not installed in it
2. Temperature mode is selected using switch TEMPERATURE °C both with activated, and with the deactivated refrigerator

<table>
<thead>
<tr>
<th>KRIOGEM-03</th>
<th>1. \checkmark 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ППС-24</td>
<td>\checkmark KRIOGEM FREEZER</td>
</tr>
<tr>
<td></td>
<td>Install cold accumulators (see Sect 7.1.5 p. 7-8)</td>
</tr>
</tbody>
</table>

| ППС-24 | 2. \checkmark KRIOGEM FREEZER |

<table>
<thead>
<tr>
<th>KRIOGEM-03</th>
<th>3. \checkmark 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\Box (green) LED POWER</td>
</tr>
<tr>
<td></td>
<td>\Box (red) OVERLOAD (briefly)</td>
</tr>
<tr>
<td></td>
<td>\checkmark fan activation</td>
</tr>
<tr>
<td></td>
<td>TEMPERATURE °C \rightarrow -22 (current value of temperature appears on display)</td>
</tr>
</tbody>
</table>

4. \checkmark \Box (green) LED MODE (when operation chamber temperature reaches -22°C)

**

If \Box (red) LED OVERLOAD
Perform Sect. 7.1.7 steps 4, 5 p. 7-11

Report to MCC

**
7.1.3. KRIOGEM-03 ACTIVATION IN INCUBATOR MODE

NOTE
1. KRIOGEM-03 is activated 1 hour prior to the experiment in incubator mode
2. Temperature is selected using TEMPERATURE °C knob with refrigerator activated and deactivated

| KRIOGEM-03 | 1. √ µ 0
| ППС-24 | √ µ KRIOGEM FREEZER
| ППС-24 | 2. KRIOGEM FREEZER
| KRIOGEM-03 | 3. ± 1 (green) LED POWER
| | (red) OVERLOAD (briefly)
| | fan activation
| | TEMPERATURE °C → to required mode (current value of temperature appears on display)
| 4. (green) LED MODE (when operation chamber temperature reaches selected temperature) **********
| | *******************************
| If (red) LED OVERLOAD
| see Sect. 7.1.7 steps 4, 5 p. 7-11
| Report to MCC
| *******************************
7.1.4. KRIOGEM-03 REFRIGERATOR DEACTIVATION

1. √ ⌀ 0 ■ LED POWER
 √ ⌀ KRIOGEM FREEZER

2. connector XP1 of cable 17KC.10ΙΟ 8210A-7830 ←|→ connector XP1
 (if necessary)
 connector XP2 of cable 17KC.42ΙΟ 8242A-3050 ←|→ connector XP2
 (if necessary)

3. Free end of grounding strap ←|→ grounding strap terminal on
 KRIOGEM-03 upper cover (if necessary)

4. Install Protective Covers on connectors XP1 and XP2 of KRIOGEM-03 (if
 necessary)

5. Open KRIOGEM-03 cover and retrieve contents from chamber

6. Stow cable 17KC 10ΙΟ 8210A-7830 and cable 17KC 42ΙΟ 8242A-3050
 behind panel 234 (if necessary)

7. Stow end of grounding strap behind panels 234 and 235 (if necessary)

8. Clean chamber with dry wipe from Sanitary Hygiene Kit after defrosting
 (during operation at low temperatures)

9. Stow KRIOGEM-03 (if necessary)
7.1.5. INSTALLATION OF COLD ACCUMULATORS AX-03 IN KRIOGEM-03 REFRIGERATOR

1. Unstow containers KB-03 (2 ea.)
2. Unstow containers from cloth covers
3. Unfasten Velcro fasteners
 Remove container cover
4. Retrieve cold accumulators AX-03 from containers housing using the handle
5. Put AX-03 in KRIOGEM-03 refrigerator
6. Place containers KB-03 housing with covers in cloth covers
 Stow cloth covers with containers
7.1.6. CLOSEOUT OPERATIONS WITH COLD ACCUMULATORS AX – 03

NOTE

1. Operations are performed directly prior to return of samples to the ground
2. Cold accumulator placement into thermal insulation (from refrigerator) container housing should be performed as soon as possible

1. Unstow cloth covers with containers KB-03
 Retrieve containers housing from cloth covers

2. Retrieve cold accumulators AX-03 from KRIOGEM-03 refrigerator using the handle or the thermal insulation

3. Stow cold accumulators AX-03 in containers KB-03 housing

4. Cover containers
 Fasten Velcro fasteners
 Place containers in cloth covers

5. Transfer containers KB-03 in cloth covers to descent module
7.1.7. TROUBLE SHOOTING

CAUTION!

1. While performing operations refrigerator power should be off
2. In case of fan failure do not run refrigerator until fan is replaced

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Cause</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerator is not activated with ø 1</td>
<td>Onboard power has not been supplied</td>
<td>Ø KRIOGEM FREEZER on ППС-24</td>
</tr>
<tr>
<td></td>
<td>Fuse has burnt out</td>
<td>Replace fuse with spare fuse from PLASMA-03 accessories kit</td>
</tr>
<tr>
<td>2. Fan does not operate but LED and display are lit</td>
<td>Bad contact in fan power connector</td>
<td>Loosen 4 fan mounting screws, remove fan and restore good contact in connector</td>
</tr>
<tr>
<td></td>
<td>Dirt sticking on fan propeller</td>
<td>Loosen 4 fan mounting screws, remove fan and clean fan propeller of dirt</td>
</tr>
<tr>
<td></td>
<td>Fan failure</td>
<td>Replace fan</td>
</tr>
<tr>
<td>3. Fan is operating, all LEDs are lit, display is not lit</td>
<td>Display brightness was reduced to minimum</td>
<td>Increase display brightness using trimming resistance BRIGHT</td>
</tr>
<tr>
<td></td>
<td>LED OVERLOAD</td>
<td>LED OVERLOAD, fan does not operate</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Air flow to fan is blocked</td>
<td>Bad contact in fan power connector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirt sticking on fan propeller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fan failure</td>
</tr>
</tbody>
</table>

7.2. PLASMA-03 CENTRIFUGE

Purpose:
- Performs separation of blood samples (in syringes) to serum and formed elements via centrifugation
- Saliva samples centrifugation in transfer vials

Hardware:
- PLASMA-03 centrifuge
- Canister
- Vial counterweight
- Syringe counterweight

Characteristics:
- Power consumption: no less than 150 W

Figure 7.6 Plasma-03 Centrifuge
7.2.1. CENTRIFUGE SETUP

1. Unstow centrifuge (panel 226)

2. Using Velcro secure centrifuge in work station in РБС-10/3 power outlet area

3. $\sqrt{\text{POWER}} \rightarrow 0$
 $\sqrt{\text{cover is safely locked}}$

4. Unstow power cable from centrifuge cable compartment on centrifuge housing
 Remove protective cover from power cable connector X1

5. $@ \text{РБС}-10/3$
 connector X1 of power cable \rightarrow connector X1 of РБС-10/3

6. Attach power cable grounding strap to one of screws (M6) on РБС-10/3

7.2.2. SAMPLE CENTRIFUGATION

NOTE
KRIOGEM-03 refrigerator should be activated at least 20 hours prior to operations in mode -22°C, with cold accumulators AX-03 placed in its chamber

1. Pull lock handle and raise cover until it clicks

2. Rotate centrifuge tray manually until container is fully aligned with centrifuge tray opening

3. Extract container from centrifuge tray
NOTE

1. When operating centrifuge, ensure centrifuge has either two syringes filled with blood installed in both sockets, or just one filled syringe and counterweight labeled "ШПРИЦ"

2. When operating centrifuge, ensure centrifuge has either two vials filled with saliva installed in both sockets, or just one filled vial and counterweight labeled "ПРОБИРКА"

3. Counterweights are stowed on the inner side of centrifuge cover

4. Snap off syringe plunger rod and install syringe (filled with blood) or vial (filled with saliva) into container (if necessary, use counterweight)

5. Place container all the way into a centrifuge tray opening
 Lower cover and until lock engages

6. РБС-10/3

 Centrifuge
 ◐ POWER → 1
 ■ (green) LED POWER
 ◐ (yellow) LED STOP

 00:00:00
 00:02:00

7. pb START
 □ (yellow) LED STOP
 □ (green) LED MODE (Centrifuge tray reached required rpm)
 Centrifugation time 4 min

8. On centrifugation completion:
 ■ (green) LED MODE
 ◐ (yellow) LED STOP (Centrifuge tray stops)

NOTE

1. For emergency stop of centrifuge, pb STOP, and ◐ (yellow) LED STOP

2. Emergency powerdown and deceleration can be triggered by an attempt to open the cover by pulling at lock handle on the working centrifuge

Centrifuge

9. ◐ POWER → 0
 ■ (green) LED POWER
 ■ (yellow) LED STOP
 ■ (green) LED MODE

10. Pull lock handle and raise cover until it clicks

11. Rotate centrifuge tray manually until container is fully aligned with centrifuge tray opening

12. Extract container with samples inside from centrifuge tray
 Extract syringe or vial from container
13. Op KRIOGEM-03 refrigerator door
14. Place syringes or vials into cold accumulator piercing foil in sockets
15. Cl KRIOGEM-03 refrigerator door

NOTE

In case of full load of KRIOGEM-03 refrigerator (2 cold accumulators AX-03 and 12 filled syringes (vials)) freezing time is not less than 24 hours

16. Take counterweight out of container
17. Place counterweight into storage location (inner side of centrifuge cover)
18. Insert container all the way into centrifuge tray opening
19. Lower cover and engage lock
20. РБС-10/3

7.2.3. CLOSEOUT OPERATIONS

1. √counterweights are placed in nominal storage location (inner side of centrifuge cover)
2. Engage lock on centrifuge cover
3. √ POWER → 0
4. √ РБС-10/3
5. connector X1 of power cable ↔ connector X1 of РБС-10/3
6. Power cable grounding strap ↔ screw (M6) on РБС-10/3
 Install protective cover on connector X1 of power cable
7. Stow power cable into centrifuge cable compartment on centrifuge housing and close with cover
8. Stow centrifuge
7.2.4. TROUBLE SHOOTING

CAUTION!

When operating centrifuge power should be off

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Probable Cause</th>
<th>Corrective Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Centrifuge is not activated with (\copyright) POWER → 1</td>
<td>Onboard power has not been supplied</td>
<td>Replace fuse with spare fuse from PLASMA-03 accessories kit</td>
</tr>
<tr>
<td></td>
<td>Fuse 5A has burnt out</td>
<td></td>
</tr>
<tr>
<td>2. Centrifuge tray does not operate when pressing pb START</td>
<td>Untightened stop screw, which activates block microswitch</td>
<td>With closed protective cover stop screw to microswitch activation, click should be heard</td>
</tr>
</tbody>
</table>
8. ECOSPHERA EQUIPMENT

Purpose:
The equipment is intended to determine:
- microbial contamination of ISS atmosphere
- total bacterial and fungal microflora counts
- microflora composition according to morphologic criteria of microorganism colonies

Hardware:
Ecosphera sampler set:
- Air sampler
- Ecosphera charger
- БП ЭКОСФЕРА (Ecosphera power supply unit)
- Tray for Petri dish storage
- Ecosphera cable (to charge Ecosphera power supply unit via Ecosphera charger)

Ecosphera kit includes:
- Petri dishes with MEDIA 1 (8 ea. + 2 spares)
- Petri dishes with MEDIA 2 (8 ea. + 2 spares)

Location:
- Ecosphera sampler set: FGB [TBD]
- Ecosphera kit: Medical locker, container 6

Figure 8.1 Ecosphera Equipment
1 – Ecosphera Air Sampler
2 – Ecosphera Power Supply Unit
3 – Ecosphera Cable
4 – Ecosphera Charger
Functions of Air Sampler Controls:

1. **sw ON-OFF**
 Power On and Power Off
2. **LED**
 Power Indicator
3. **sw РАСХОД**
 Selects intake fan motor operation time 0---15 (16 positions)
4. **pb ПУСК**
 Starts the intake fan motor
ECOSPHERA Kit:

Ecospera kit consists of two separate compartments containing:

- eight Petri dishes with MEDIA 1 to collect bacterial flora samples
- eight Petri dishes with MEDIA 2 to collect fungal flora samples
- two spare Petri dishes for MEDIA 1 and MEDIA 2 (without indication of sample collection location)

Petri dishes are labeled as follows:

MEDIA 1/2/ location X (X from 1 to 8 – sample collection location number)

Table indicating the collection locations is provided on the internal surface of Ecospera kit cover.

![Figure 8.4 Ecospera Kit](image)
For notes
9. HEARING PROTECTION SET

Purpose:
Individual systems acoustic noise protection of cosmonauts’ hearing

Hardware:
Case
Earphones
Charge unit
Earphones to external comm devices interconnecting cable [CK]

9.1. USE OF EARPHONES

It is recommended to use earphones constantly, especially when resting, listening to the music and for conducting amateur comm passes using earphones as external loudspeaker

Figure 9.1 Earphones (General View)
9.1.1. USE OF EARPHONES FOR HEARING PROTECTION

1. Unstow earphones from case

2. † pb on earphones □ LED on earphones (see Figure 9.1 p. 9-1) ************
 * ** *
 If ■ LED:
 Charge batteries see Sect. 9.2 p. 9-4
 * ** *

3. Don earphones

4. If necessary adjust earphones to head size moving earpads along headband
 Ensure earpads are adjust snugly on head (earphones pressing force is adjusted
 using upper Velcro)

 NOTE
 1. Duration of earphones wearing is determined per crew discretion
 2. Squelch system operation time with fully charged battery is 30 - 50 hours
 3. Earphones wearing does not distort audio signals and voice perception

5. Doff earphones when use is complete

6. † pb on earphones ■ LED on earphones
9.1.2. USE OF EARPHONES FOR COMM

1. cnctr XS5 of interconnecting cable CK →|← cnctr XP5 of earphones
2. cnctr XP7 of interconnecting cable CK →|← external comm device
3. ↓ pb on earphones □ LED on earphones
4. Don earphones

NOTE
When earphones are powered, together with active squelch at frequencies lower than 800 Hz, there is additional multiplication of incoming signal per 3-4 decibels at 800 - 1500 Hz voice range frequencies

5. When operation is complete:
 Doff earphones
 ↓ pb on earphones ■ LED on earphones
6. cnctr XP7 of cable CK ↔ external comm device
7. cnctr XS5 of cable CK ↔ cnctr XP5 of earphones by pressing lock on cnctr
9.2. BATTERY CHARGE

NOTE

1. While charging battery, earphones power should be off
2. Each earpad has connector for batteries charge (XS3 and XS4)
3. To raise battery cycle life it is recommended to charge battery after complete discharge

1. Configure equipment per Figure 9.2 p. 9-5
2. РБС-10/3
3. sw on charge unit
 - (green) LED on charge unit
 - (red) LED on charge unit

* **

 If (red) LED on charge unit
 - (green) LED on charge unit
 - sw on charge unit immediately
 (short circuit in output circuit is possible)
 Disassemble equipment (see Figure 9.2 p. 9-5)
 Report to MCC

 If (green) LED on charge unit
 - (red) LED on charge unit
 - cnctr XP3 and cnctr XS3(XS4)
 are reliably mated
 * **

NOTE

1. Battery charge time is 10-12 hours
2. Charge may be stopped and earphones may be used at any time
3. Earphones can be used during battery charge, in this case charge time should be proportionally increased

4. When battery charge is complete:
 - sw on charge unit
 - (green) LED
 - (red) LED

5. РБС-10/3

6. Disassemble equipment per Figure 9.2 p. 9-5
Figure 9.2 Battery charge diagram
For notes