First self-powered device with wireless data transmission


Scientists are reporting development of the first self-powered nano-device that can transmit data wirelessly over long distances. In a study in ACS's journal Nano Letters, they say it proves the feasibility of a futuristic genre of tiny implantable medical sensors, airborne and stationary surveillance cameras and sensors, wearable personal electronics, and other devices that operate independently without batteries on energy collected from the environment.

Zhong Lin Wang and colleagues explain that advances in electronics have opened the door to developing tiny devices that operate battery-free on minute amounts of electricity that can be harvested from the pulse of a blood vessel, a gentle breeze, or the motions of a person walking. "It is entirely possible to drive the devices by scavenging energy from sources in the environment such as gentle airflow, vibration, sonic wave, solar, chemical, and/or thermal energy," the scientists explain.

The device consists of a nanogenerator that produces electricity from mechanical vibration/triggering, a capacitor to store the energy, and electronics that include a sensor and a radio transmitter similar to those in Bluetooth mobile phone headsets. Their device transmitted wireless signals that could be detected by an ordinary commercial radio at distances of more than 30 feet.

###

The authors acknowledge funding from DARPA and the U.S. Department of Energy, Basic Energy Sciences.

Please follow SpaceRef on Twitter and Like us on Facebook.