SpaceRef

SpaceRef


NASA Mars Odyssey THEMIS Image: Cloud Interactions

Status Report From: Mars Odyssey THEMIS
Posted: Friday, July 2, 2004

Medium image for 20040701a
Image Context:
Context image for 20040701a
Context image credit: NASA/Mars Orbiter Laser Altimeter (MOLA) Team
[ Find on map: Javascript version ]
[ Find on map: CGI version ]

ParameterValue ParameterValue
Latitude68.4   InstrumentVIS
Longitude258.8E (101.2W)   Resolution (m)38
Image Size (pixels)6663x641   Image Size (km)253.2x24.4

The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

[Source: ASU THEMIS Science Team]

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Image Credit: NASA/JPL/Arizona State University


[ Show Full-Size Image (GIF) ] [ Show Full-Size Image (JPG) ]
[ Show Full-Size Image (PNG) ] [ Show Full-Size Image (TIF) ]
[ Printer-friendly version ]

// end //

More status reports and news releases or top stories.

Please follow SpaceRef on Twitter and Like us on Facebook.

SpaceRef Newsletter